• Acknowledgement: I would like to thank Prof. Lieven Vandenberghe (UCLA) and Prof. Wotao Yin (UCLA). Most of the slides are motivated or even taken directly from their courses.

  • 第1周,9月19日,课程简介,凸优化问题介绍
    lecture notes on introduction , lecture notes on convex sets , demo: sparse l1 example.m

  • 第2周,9月26日,凸集,凸集和凸函数的定义和判别
    Prof. Lieven Vandenberghe's lecture notes on convex sets
    read chapter 2 in the book “Convex optimization”.
    Prof. Lieven Vandenberghe's lecture notes on convex functions
    read chapter 3 in the book “Convex optimization”.

  • 第3周,10月3日,国庆节放假

  • 第4周,10月10日,数值代数基础,向量,矩阵,范数,子空间,Cholesky分解,QR分解,特征值分解,奇异值分解
    典型的凸优化问题
    Prof. Lieven Vandenberghe's lecture notes on numerical algebra background
    Prof. Lieven Vandenberghe's lecture notes on convex problems
    numerical algebraic background 请读非线性规划参考材料
    read chapter 4 in in the book “Convex optimization”
    demo: demo_linalg.m
    Demo: Sparse matrix-dense vector products using intel MKL
    BLAS (Basic Linear Algebra Subprograms)
    LAPACK (Linear Algebra PACKage)
    Intel Math Kernel Library – Documentation
    Call LAPACK and BLAS Functions in Matlab

  • 第5周,10月17日,线性规划,二次锥规划,半定规划简介: lecture notes
    线性规划,二次锥规划,半定规划例子: lecture notes
    凸优化模型语言和算法软件,CVX, SDPT3, Mosek, CPLEX, Gruobi
    Prof. Boyd lecture notes on Disciplined convex programming and CVX
    read chapter 4 in in the book “Convex optimization”
    Introduction on Linear Programming (LP), read Chapter 1 in “Introduction to Linear Optimization” by Dimitris Bertsimas and John N. Tsitsiklis.
    Second-order Cone Programming (SOCP), read section 2 in “Second-order cone programming”
    Semidefinite Programming (SDP), read section 3 in “SDP-M-J-Todd” and section 2 in “SDP-Lieven-Boyd”
    The max cut paper by Goemans and Williamson
    模型语言: CVX , YALMIP
    LP, SOCP, SDP典型算法软件: SDPT3 , MOSEK , CPLEX , GUROBI
    NLP 典型算法软件: Ipopt , KNITRO
    Decision Tree for Optimization Software

  • 第6周,10月24日,对偶理论, 凸优化最优性条件 Prof. Lieven Vandenberghe's lecture notes on duality
    read chapter 5 in in the book “Convex optimization”
    Lagrangian function, Lagrangian dual problem, examples
    max cut problem: dual of nonconvex problem, SDP relaxation: the dual of the dual
    duality using problem reformulation

  • 第7周,10月31日,梯度法和线搜索算法,最速下降法及其复杂度分析,线搜索算法,Barzilar-Borwein 方法
    Prof. Lieven Vandenberghe's lecture notes on gradient methods
    Complexity analysis: Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004), section 2.1.
    Line search: “Numerical Optimization”, Jorge Nocedal and Stephen Wright, chapter 3: 3.1, 3.5
    Barzilar-Borwein Method: “Optimization Theory and Methods”, Wenyu Sun, Ya-Xiang Yuan, section 3.1.3
    Matlab code on the BB method with nonmonotone line search

  • 第8周,11月7日, 次梯度及次梯度算法, smoothing
    Prof. Lieven Vandenberghe's lecture notes on subgradient
    Prof. Lieven Vandenberghe's lecture notes on subgradient method

  • 第9周,11月14日, 期中考试

  • 第10周,11月21日, 近似点梯度法,近似点梯度法的构造和分析
    Prof. Lieven Vandenberghe's lecture notes on proximal mapping
    Prof. Lieven Vandenberghe's lecture notes on proximal gradient method
    “Proximal Algorithms”, N. Parikh and S. Boyd, Foundations and Trends in Optimization, 1(3):123-231, 2014.

  • 第11周,11月28日, 条件梯度法, inertial proximal method, 对偶分解, 对偶近似点算法
    Prof. Lieven Vandenberghe's lecture notes on conjugate function
    Prof. Lieven Vandenberghe's lecture notes on dual decomposition
    Prof. Lieven Vandenberghe's lecture notes on dual proximal gradient method
    条件梯度法参考: 王奇超,文再文,蓝光辉,袁亚湘, 优化算法复杂度分析简介, (paper)
    Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock, iPiano: Inertial Proximal Algorithm for Nonconvex Optimization, SIAM J. IMAGING SCIENCES, Vol. 7, No. 2

  • 第12周,12月5日,Nesterov加速算法, Nesterov加速算法的分析和应用
    Prof. Lieven Vandenberghe's lecture notes on proximal point method
    Prof. Lieven Vandenberghe's lecture notes on fast proximal gradient method
    Prof. Lieven Vandenberghe's lecture notes on smoothing
    王奇超,文再文,蓝光辉,袁亚湘, 优化算法复杂度分析简介, (paper)
    Stephen Boyd John Duchi's lecture notes on mirror descent methods
    Paul Tseng, Approximation accuracy, gradient methods, and error bound for structured convex optimization, Math. Program., Ser. B (2010) 125:263–295
    参考文献: Amir Beck, Marc Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Weijie Su, Stephen Boyd, E. Candes, A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights

  • 第13周,12月12日,Douglas-Rachford splitting and ADMM
    Prof. Lieven Vandenberghe's lecture notes on ADMM
    “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers”, S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Foundations and Trends in Machine Learning, 3(1):1–122, 2011
    Daniel O'Connor, Lieven Vandenberghey, On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting

  • 第14周,12月19日, 交替方向乘子法及其变形,交替方向乘子法的构造, Distributed ADMM
    Prof. Wotao Yin's lecture notes on ADMM

  • 第15周,12月26日, Block Coordinate Descent Methods, semi-smooth Newton methods
    lecture notes on BCD
    lecture notes on semi-smooth methods
    Jérôme Bolte, Shoham Sabach, Marc Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems

  • 第16周,1月2日,Barrier functions, Path-following methods
    Prof. Lieven Vandenberghe's lecture notes on barrier functions
    Prof. Lieven Vandenberghe's lecture notes on path following methods
    Prof. Lieven Vandenberghe's lecture notes on primal-dual methods

  • 作业一: 教材 “Convex optimization”,习题:2.9, 2.15 (a), (b), (c), 2.33, 3.11, 3.17, 3.20, 3.35 交作业时间: 10月10日课堂上交(上课前)。

  • 作业二: 教材 “Convex optimization”,习题:4.2, 4.5, 4.8, 4.13, 4.24, 4.26. 交作业时间:10月24日课堂上交(上课前)。

  • 作业三: 教材 “Convex optimization”,习题:4.28, 4.40, 4.43, 4.45, 4.47. 交作业时间: 10月31日课堂上交(上课前)。

  • 作业四: 教材 “Convex optimization”,习题:5.6, 5.7, 5.16, 5.23, 5.27, 5.30. 交作业时间: 11月7日课堂上交(上课前)。

  • 作业五: homework5.pdf 交作业时间:

  • 11月28日: 1, 2, 3 (a), (b)

  • 12月12日: 3 (c), (d), (e), (f)

  • 12月26日: 3 (g), (h), (i)

  • 12月26日: 4 (选做)

  • 2019年1月16日晚12点(不接受晚交报告),书面报告 (包括latex源文件,程序等等打包发email给助教 ([email protected])。
    提交的文件请全部打包,文件名为 “final2-name1-name2.zip”. 比如如果成员为Pengyu Qian 和 Junzi Zhang,则文件名为 final2-PengyuQian-JunziZhang.zip

  • 请在书面报告声明:本项目文件的主要内容没有用在其它课程做为课程项目或作业提交。

  • 如果是多人组队,请明确说明每人负责的部分和内容。

  •