相关文章推荐

本文是 Systrace 线程 CPU 运行状态分析技巧系列的第三篇,本文主要讲了使用 Systrace 分析 CPU 状态时遇到的 Sleep Uninterruptible Sleep 状态的原因排查方法与优化方法,这两个状态导致性能变差概率非常高,而且排查起来也比较费劲,网上也没有系统化的文档。

本系列的目的是通过 Systrace 这个工具,从另外一个角度来看待 Android 系统整体的运行,同时也从另外一个角度来对 Framework 进行学习。也许你看了很多讲 Framework 的文章,但是总是记不住代码,或者不清楚其运行的流程,也许从 Systrace 这个图形化的角度,你可以理解的更深入一些。Systrace 基础和实战系列大家可以在 Systrace 基础知识 - Systrace 预备知识 或者 博客文章目录 这里看到完整的目录

  • Systrace 线程 CPU 运行状态分析技巧 - Runnable 篇
  • Systrace 线程 CPU 运行状态分析技巧 - Running 篇
  • Systrace 线程 CPU 运行状态分析技巧 - Sleep 和 Uninterruptible Sleep 篇
  • Linux 中的 Sleep 状态是什么

    TASK_INTERUPTIBLE vs TASK_UNINTERRUPTIBLE

    一个线程的状态不属于 Running 或者 Runnable 的时候,那就是 Sleep 状态了(严谨来说,还有其他状态,不过对性能分析来说不常见,比如 STOP、Trace 等)。

    在 Linux 中的Sleep 状态可以细分为 3 个状态:

  • TASK_INTERUPTIBLE → 可中断
  • TASK_UNINTERRUPTIBLE → 不可中断
  • TASK_KILLABLE → 等同于 TASK_WAKEKILL | TASK_UNINTERRUPTIBLE
  • 在 Systrace/Perfetto 中,Sleep 状态指的是 Linux 中的TASK_INTERUPTIBLE,trace 中的颜色为白色。Uninterruptible Sleep 指的是 Linux 中的 TASK_UNINTERRUPTIBLE,trace 中的颜色为橙色。

    本质上他们都是处于睡眠状态,拿不到 CPU的时间片,只有满足某些条件时才会拿到时间片,即变为 Runnable,随后是 Running。

    TASK_INTERRUPTIBLE 与 TASK_UNINTERRUPTIBLE 本质上都是 Sleep, 区别在于前者是可以处理 Signal 而后者不能,即使是 Kill 类型的Signal 。因此,除非是拿到自己等待的资源之外,没有其他方法可以唤醒它们。 TASK_WAKEKILL 是指可以接受 Kill 类型的Signal 的TASK_UNINTERRUPTIBLE。

    Android 中的 Looper、Java/Native 锁等待都属于 TAKS_INTERRUPTIBLE,因为他们可以被其他进程唤醒,应该说绝大部分的程序都处于 TAKS_INTERRUPTIBLE 状态,即 Sleep 状态。 看看 Systrace 中的一大片进程的白色状态就知道了(trace 中表现为白色块),它们绝大部分时间都是在 Runnning 跟 Sleep 状态之间转换,零星会看到几个 Runnable 或者 UninterruptibleSleep,即蓝色跟橙色。

    TASK_UNINTERRUPTIBLE 作用

    似乎看来 TASK_INTERUPTIBLE 就可以了,那为什么还要有 TASK_UNINTERRUPTIBLE 状态呢?

    中断来源有两个,一个是硬件,另一个就是软件。硬件中断是外围控制芯片直接向 CPU 发送了中断信号,被 CPU 捕获并调用了对应的硬件处理函数。软件中断,前面说的 Signal、驱动程序里的 softirq 机制,主要用来在软件层面触发执行中断处理程序,也可以用作进程间通讯机制。

    一个进程可以随时处理软中断或者硬件中断,他们的执行是在当前进程的上下文上,意味着共享进程的堆栈。但是在某种情况下,程序不希望有任何打扰,它就想等待自己所等待的事情执行完成。比如与硬件驱动打交道的流程,如 IO 等待、网络操作。 这是为了保护这段逻辑不会被其他事情所干扰, 避免它进入不可控的状态

    Linux 处理硬件调度的时候也会临时关闭中断控制器、调度的时候会临时关闭抢占功能,本质上为了 防止程序流程进入不可控的状态 。这类状态本身执行时间非常短,但系统出异常、运行压力较大的时候可能会影响到性能。

    https://elixir.bootlin.com/linux/latest/ident/TASK_UNINTERRUPTIBLE

    可以看到内核中使用此状态的情况,典型的有 Swap 读数据、信号量机制、mutex 锁、内存慢路径回收等场景。

    分析时候的注意点

    首先要认识到 TASK_INTERUPTIBLE、TASK_UNINTERRUPTIBLE 状态的出现是正常的,但是如果这些这些状态的累计占比达到了一定程度,就要引起注意了。特别是在关键操作路径上这类状态的占比较多的时候,需要排查原因之后做相应的优化。 分析问题以及做优化的时候需要牢牢把握两个关键点,它类似于内功心法一样:

  • 原因的排查方法
  • 优化方法论
  • 你需要知道是什么原因导致了这次睡眠,是主动的还是被动的?如果是主动的,通过走读代码调查是否是正常的逻辑。如果是被动的,故事的源头是什么? 这需要你对系统有足够多的认识,以及分析问题的经验,你需要经常看案例以增强自己的知识。

    以下把 TASK_INTERUPTIBLE 称之为 Sleep,TASK_UNINTERRUPTIBLE称之为 UninterruptibleSleep,目的是与 Systrac 中的用词保持一致。

    初期分析 Sleep 与 UninterruptibleSleep 状态的经验不足时你会感到困惑,这种困惑主要是来自于对系统的不了解。你需要读大量的框架层、内核层的代码才能从 Trace 中找出蛛丝马迹。目前并没有一种 Trace 工具能把整个逻辑链路描述的很清楚,而且他们有时候还有不准的时候,比如 Systrace 中的 wakeup_from 信息。只有广泛的系统运行原理做为支持储备,再结合 Trace 工具分析问题,才能做到准确定位问题根因。否则就是我经常说的「性能优化流氓」,你说什么是什么,别人也没法证伪。反复折磨测试同学复测,没测出来之后,这个问题也就不了了之了。

    本文没办法列举完所有状态的原因,因此只能列举最为常见的类型,以及典型的实际案例。更重要的是,你需要掌握诊断方法,并结合源代码来定位问题。

    Trace 中的可视化效果

    Pefetto 中支持显示的状态

    Sleep 状态分析

    图 1: UIThread 等待 RenderThread

    诊断方法

    通过 wakeup from tid: *** 查看唤醒线程

    Sleep 最常见的有图 1(UIThread 与 RenderThread 同步)的情况与图 2(Binder 调用)的情况。 Sleep 状态一般是由程序主动等待某个事件的发生而造成的,比如锁等待,因此它有个比较明确的唤醒源。比如图 1,UIThread 等待的是 RenderThread,你可以通过阅读代码来了解这种多线程之间的交互关系。虽然最直接,但是对开发者的要求非常高,因为这需要你熟读图形栈的代码。这可不是一般的难度,是追求的目标,但不具备普适性。

    更简单的方法是通过所谓的 wakeup from tid: *** 来调查线程之间的交互关系。从前面的 Runnable 文章 中讲过,任何线程进入 Running 之前会先进入到 Runnable 状态,由此再转换成 Running。从 Sleep 状态切换到 Running,必然也要经过 Runnable。

    进入到 Runnable 有两种方式,一种是 Running 中的程序被抢占了,暂时进入到 Runnable。还有一种是由另外一个线程将此线程(处于 Sleep 的线程)变成了 Runnable。

    我们在调查Sleep 唤醒线程关系的时候,应用到的原理是第二种情况。在 Systrace 中这种是被 wakeup from tid: *** 信息所呈现。线程被抢占之后变成 Runnable,在 Systrace 中是被 Running Instead 呈现。

    需要特别注意的是 wakeupfrom 这个有时候不准,原因是跟具体的 tracepoint 类型有关。分析的时候要注意甄别,不要一味地相信这个数据是对的。

  • Simpleperf 还原代码执行流
  • 在 Systrace 寻找时间点对齐的事件
  • 方法 1 适合用来看程序到底在执行什么操作进入到这种状态,是 IO 还是锁等待?球里连载 Simpleperf 工具的使用方法,其中「 Simpleperf 分析篇 (1): 使用 Firefox Profiler 可视分析 Simpleperf 数据 」介绍了可以按时间顺序看函数调用的可视化方法。其他使用也会陆续更新,直接搜关键字即可。

    方法 2 是个比较笨的方法,但有时候也可以通过它找到蛛丝马迹,不过缺点是错误率比较高。

    耗时过长的常见原因

     
    推荐文章