图2
gRNA靶位点及CRISPR/Cas9-gRNA的组装示意图
A: 3个靶点分别在
TGW6
基因内的位置; B: 3个靶点组装到pYLCRISPR/Cas9-MT(I)载体而成的T-DNA元件。
Fig. 2
Target sites of the gRNA and cloning of gRNA cassette into the CRISPR/Cas9 vector
A: positions of three targets in the
TGW6
gene locus; B: T-DNA fragment assembled with the three targets and the pYLCRISPR/Cas9-MT(I) vector.
图3
Asc
I酶切鉴定pYLCRISPR/Cas9-tgw6-gRNA载体
Fig. 3
Identification of the pYLCRISPR/Cas9-tgw6-gRNA plasmid digested with
Asc
I
M: 1 kb DNA ladder marker; 1: pYLCRISPR/Cas9-tgw6-gRNA.
图5
tgw6
突变体的PCR检测及其与野生型序列比对分析
A: T
0
代(1~22)水稻
tgw6
编辑位点附近DNA片段的PCR检测结果, 野生型(WT)为H447, 水稻扩增长度为953 bp; B: 对应于A的PCR产物的测得序列与野生型(WT)的序列比对结果。“ Frequency” 指A电泳图对应的突变体中同一类型编辑位点突变个体出现的频率。
Fig. 5
PCR identification and sequence alignment of
tgw6
mutants compared to the WT line
A: PCR identification results for the DNA fragments near the edited locus of the
tgw6
T
0
mutants (1-22) and WT line (H447); B: sequence alignment of
tgw6
mutants compared to the WT line. “ Frequency” refers to the frequency of the same edited mutation among the corresponding mutants in the electrophoresis map of A.
图6
部分
tgw6
突变体潮霉素基因的PCR检测
1: WT; 2~5: 缺失103 bp的突变体; 6~9: 缺失123 bp的突变体; 10~13: 缺失141 bp的突变体; 14~17: 缺失144 bp的突变体; 18~21: 缺失148 bp的突变体。
Fig. 6
PCR identification for
hph
gene of parts of
tgw6
mutants
1: WT; 2-5: the 103-bp deletion-mutants; 6-9: the 123-bp deletion-mutants; 10-13: the 141-bp deletion-mutants; 14-17: the 144-bp deletion-mutants; 18-21: the 148-bp deletion-mutants.
表2
Table 2
表2(Table 2)
表2
不同类型
tgw6
缺失突变体的千粒重测定结果
Table 2
Thousand grain weight of different types of homozygous deletion mutants of
tgw6
突变类型
Mutant type
缺失碱基数
Base deletion (bp)
千粒重
Thousand-grain weight (g)
增加比例
Percentage increased (%)
野生型Wide type
0
22.0± 0.50 a
0
1
103
23.1± 0.57 b
5.0
2
123
23.4± 0.50 b
6.3
3
141
23.1± 0.47 b
5.0
4
144
23.7± 0.38 b
7.7
5
148
24.0± 0.35 b
8.2
Data listed in the table are mean± standard error; values followed by the same letter within the same column are not significantly different at the 0.05 probability level (Duncan’ s method).
You A
Q
,
Lu X
G
,
Jin H
J
,
Ren
X
,
Liu
K
,
Yang G
C
,
Yang H
Y
,
Zhu L
L
,
He G
C.
Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice.
Genetics
,
2006
,
172
:
1287
-
1300
[本文引用:1]
Shomura
A
,
Izawa
T
,
Ebana
K
,
Ebitani
T
,
Kanegae
H
,
Konishi
S
,
Yano
M.
Deletion in a gene associated with grain size increased yields during rice domestication.
Nat Genet
,
2008
,
40
:
1023
-
1028
[本文引用:1]
Weng J
F
,
Gu S
H
,
Wan X
Y
,
Gao
H
,
Guo
T
,
Su
N
,
Lei
C
,
Zhang
X
,
Cheng Z
J
,
Guo X
P
,
Wang J
L
,
Jiang
L
,
Zhai H
Q
,
Wan J
M.
Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight.
Cell Res
,
2008
,
18
:
1199
-
1209
[本文引用:1]
Ishimaru
K
,
Hirotsu
N
,
Madoka
Y
,
Murakami
N
,
Hara
N
,
Onodera
H
,
Kashiwagi
T
,
Ujiie
K
,
Shimizu
B
,
Onishi
A
,
Miyagawa
H
,
Katoh
E.
Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.
Nat Genet
,
2013
,
45
:
707
-
711
[本文引用:2]
Fan C
C
,
Xing Y
Z
,
Mao H
L
,
Lu T
T
,
Han
B
,
Xu C
G
,
Li X
H
,
Zhang Q
F.
GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.
Theor Appl Genet
,
2006
,
112
:
1164
-
1171
[本文引用:1]
Li Y
B
,
Fan C
C
,
Xing Y
Z
,
Jiang Y
H
,
Luo L
J
,
Sun
L
,
Shao
D
,
Xu C
J
,
Li
X
,
Xiao J
H
,
He Y
Q
,
Zhang Q
F.
Natural variation in GS5 plays an important role in regulating grain size and yield in rice.
Nat Genet
,
2011
,
43
:
1266
-
1269
[本文引用:1]
Song X
J
,
Huang
W
,
Shi
M
,
Zhu M
Z
,
Lin H
X.
A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.
Nat Genet
,
2007
,
39
:
623
-
630
[本文引用:1]
Wang S
K
,
Wu
K
,
Yuan
Q
,
Liu
X
,
Liu
Z
,
Lin
X
,
Zeng
R
,
Zhu
H
,
Dong
G
,
Qian
Q
,
Zhang G
Q
,
Fu X
D.
Control of grain size, shape and quality by OsSPL16 in rice.
Nat Genet
,
2012
,
44
:
950
-
954
[本文引用:1]
Hu Z
J
,
He H
H
,
Zhang S
Y
,
Sun
F
,
Xin
X
,
Wang
W
,
Qian
X
,
Yang J
S
,
Luo X
J.
A Kelch motif—containing serine/threonine protein phosphatase determines the large grain QTL trait in rice.
J Integr Plant Biol
,
2012
,
54
:
979
-
990
[本文引用:2]
Qi
P
,
Lin Y
S
,
Song X
J
,
Shen J
B
,
Huang
W
,
Shan J
X
,
Zhu M
Z
,
Jiang
L
,
Gao J
P
,
Lin H
X.
The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1; 3.
Cell Res
,
2012
,
22
:
1666
-
1680
[本文引用:1]
Zhang
X
,
Wang
J
,
Huang
J
,
Lan
H
,
Wang
C
,
Yin
C
,
Wu
Y
,
Tang
H
,
Qian
Q
,
Li
J
,
Zhang
H.
Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice.
Proc Natl Acad Sci USA
,
2012
,
109
:
21534
-
21539
[本文引用:1]
Rath
D
,
Amlinger
L
,
Rath
A
,
Lundgren
M.
The CRISPR-Cas immune system: biology, mechanisms and applications.
Biochimie
,
2015
,
117
:
119
-
128
[本文引用:1]
Belhaj
K
,
Chaparro-Garcia
A
,
Kamoun
S
,
Patron N
J
,
Nekrasov
V.
Editing plant genomes with CRISPR/Cas9.
Curr Opin Biotechnol
,
2015
,
32
:
76
-
84
[本文引用:1]
Osakabe
Y
,
Osakabe
K.
Genome editing with engineered nucleases in plants.
Plant Cell Physiol
,
2015
,
56
:
389
-
400
[本文引用:1]
Jiang
W
,
Bikard
D
,
Cox
D
,
Zhang
F
,
Marraffini L
A.
RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat Biotechnol
,
2013
,
31
:
233
-
239
[本文引用:1]
Feng
Z
,
Zhang
B
,
Ding
W
,
Liu
X
,
Yang D
L
,
Wei
P
,
Cao
F
,
Zhu
S
,
Zhang
F
,
Mao
Y
,
Zhu J
K.
Efficient genome editing in plants using a CRISPR/Cas system.
Cell Res
,
2013
,
23
:
1229
-
1232
[本文引用:1]
Bortesi
L
,
Fischer
R.
The CRISPR/Cas9 system for plant genome editing and beyond.
Biotechnol Adv
,
2015
,
33
:
41
-
52
[本文引用:1]
Ma X
L
,
Zhang
Q
,
Zhu
Q
,
Liu
W
,
Chen
Y
,
Qiu
R
,
Wang
B
,
Yang
Z
,
Li
H
,
Lin
Y
,
Xie
Y
,
Shen
R
,
Chen
S
,
Wang
Z
,
Chen
Y
,
Guo
J
,
Chen
L
,
Zhao
X
,
Dong
Z
,
Liu Y
G.
A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants.
Mol Plant
,
2015
,
8
:
1274
-
1284
[本文引用:3]
Xu R
F
,
Li
H
,
Qin R
Y
,
Li
J
,
Qiu C
H
,
Yang Y
C
,
Ma
H
,
Li
L
,
Wei P
C
,
Yang J
B.
Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system.
Sci Rep
,
2015
,
11491
, doi:
DOI:10.1038/srep11491
[本文引用:3]
Hiei
Y
,
Ohta
S
,
Komari
T
,
Kumashiro
T.
Efficient transformation of rice (Oryza sativa L. ) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.
Plant J
,
1994
,
6
:
271
-
282
[本文引用:1]
Wang
H
,
Chu
Z
,
Ma
X
,
Li
R
,
Liu
Y.
A high through-Put protocol of plant genomic DNA preparation for PCR.
Acta Agron Sin
,
2013
,
39
:
1200
-
1205
[本文引用:1]
Bibikova
M
,
Golic
M
,
Golic K
G
,
Carroll
D.
Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases.
Genetics
,
2002
,
161
:
1169
-
1175
[本文引用:1]
Bibikova
M
,
Beumer
K
,
Trautman J
K
,
Carroll
D.
Enhancing gene targeting with designed zinc finger nucleases.
Science
,
2003
,
300
:
764
[本文引用:1]
Dreier
B
,
Fuller R
P
,
Segal D
J
,
Lund C
V
,
Blancafort
P
,
Huber
A
,
Koksch
B
,
Barbas C
F.
Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors.
J Biol Chem
,
2005
,
280
:
35588
-
35597
[本文引用:1]
Hockemeyer
D
,
Wang
H
,
Kiani
S
,
Lai C
S
,
Gao
Q
,
Cassady J
P
,
Cost G
J
,
Zhang
L
,
Santiago
Y
,
Miller J
C
,
Zeitler
B
,
Cherone J
M
,
Meng
X
,
Hinkley S
J
,
Rebar E
J
,
Gregory P
D
,
Urnov F
D
,
Jaenisch
R.
Genetic engineering of human pluripotent cells using TALE nucleases.
Nat Biotechnol
,
2011
,
29
:
731
-
734
[本文引用:1]
Tesson
L
,
Usal
C
,
Ménoret
S
,
Leung
E
,
Niles B
J
,
Remy
S
,
Santiago
Y
,
Vincent A
I
,
Meng
X
,
Zhang
L
,
Gregory P
D
,
Anegon
I
,
Cost G
J.
Knockout rats generated by embryo microinjection of TALENs.
Nat Biotechnol
,
2011
,
29
:
695
-
696
[本文引用:1]
Huang
P
,
Xiao
A
,
Zhou M
G
,
Zhu Z
Y
,
Lin
S
,
Zhang
B.
Heritable gene targeting in zebrafish using customized TALENs.
Nat Biotechnol
,
2011
,
29
:
699
-
700
[本文引用:1]
Endo
M
,
Mikami
M
,
Toki
S.
Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice.
Plant Cell Physiol
,
2015
,
56
:
41
-
47
[本文引用:1]
Jiang
W
,
Zhou
H
,
Bi
H
,
Fromm
M
,
Yang
B
,
Weeks D
P.
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice.
Nucl Acids Res
,
2013
,
41
:
e188
. doi:
DOI:10.1093/nar/gkt780
[本文引用:1]
DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
Nucl Acids Res
,
2013
,
41
:
4336
-
4343
[本文引用:1]
Shen
B
,
Zhang
J
,
Wu H
Y
,
Wang
J
,
Ma
K
,
Li
Z
,
Zhang X
G
,
Zhang
P
,
Huang
X.
Generation of gene-modified mice via Cas9/RNA-mediated gene targeting.
Cell Res
,
2013
,
23
:
720
-
723
[本文引用:1]
Gratz S
J
,
Cummings A
M
,
Nguyen J
N
,
Hamm D
C
,
Donohue L
K
,
Harrison M
M
,
Wildonger
J
,
O’Connor-Giles K M. Genome engineering of Drosophila with the CRISPR RNA guided Cas9 nuclease.
Genetics
,
2013
,
194
:
1029
-
1035
[本文引用:1]
Cong
L
,
Ran F
A
,
Cox
D
,
Lin
S
,
Barretto
R
,
Habib
N
,
Hsu P
D
,
Wu
X
,
Jiang
W
,
Marraffini L
A
,
Zhang
F.
Multiplex genome engineering using CRISPR/Cas systems.
Science
,
2013
,
339
:
819
-
823
[本文引用:1]
Chang
N
,
Sun
C
,
Gao
L
,
Zhu
D
,
Xu
X
,
Zhu
X
,
Xiong J
W
,
Xi J
J.
Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos.
Cell Res
,
2013
,
23
:
465
-
472
[本文引用:1]
Dickinson D
J
,
Ward J
D
,
Reiner D
J
,
Goldstein
B.
Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination.
Nat Methods
,
2013
,
10
:
1028
-
1034
[本文引用:1]
Čermák
T
,
Baltes N
J
,
Čegan
R
,
Zhang
Y
,
Voytas D
F.
High- frequency, precise modification of the tomato genome.
Genome Biol
,
2015
,
16
(
1
):
232
. doi:
DOI:10.1186/s13059-015-0796-9
[本文引用:1]
Yin
K
,
Han
T
,
Liu
G
,
Chen
T
,
Wang
Y
,
Yu A
Y
,
Liu
Y.
A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing.
Sci Rep
,
2015
,
14926
. doi:
DOI:10.1038/srep14926
[本文引用:1]