Continuous First Order Logic
宋诗畅 Shichang Song
本课程讲述的连续一阶逻辑(continuous first order logic),有时候也叫做度量结构的模型论(model theory for metric structures),连续模型论,或者就叫连续逻辑。它是由Ben Yaacov, Berenstein, Henson, Usvyatsov 在2008年前后发展起来的一种多值逻辑。连续一阶逻辑跟经典一阶逻辑最大的不同是,连续一阶逻辑的真值表是整个[0,1]区间。连续模型论作为模型论的一种推广,保持了很多模型论的特性,比如,连续模型论满足,紧致性定理,Lowenheim-Skolem 定理,可以定义型空间,讨论量词消解,范畴性和稳定性。本课程将从连续一阶逻辑的语法和语义出发,详细地讲述连续一阶逻辑的基础知识。最后,作为例子,介绍连续一阶逻辑在概率论中的应用。本课程只需要基础的一阶逻辑知识。
The lectures will be in Chinese.
参考文献:
■
I. Ben Yaacov, A. Berenstein, C. W. Henson and A. Usvyatsov, Model theory for metric structures, in: Model Theory with Applications to Algebra and Analysis, Volume 2, London Math. Society Lecture Note Series, 350, Cambridge University Press, 2008, 315-427.
■
I. Ben Yaacov and A. Usvyatsov, Continuous first order logic and local stability, Trans. Amer. Math. Soc. 362 (2010), 5213-5259.
课程计划:
Day 1:
Metric structures, signatures, formulas, semantics
Day 2:
Ultraproducts, Compactness Theorem, connectives
Day 3:
Lowenheim-Skolem Theorem, types, definability
Day 4:
Omitting types theorem, separably categoricity, quantifier elimination, stability
Day 5:
Application to probability theory; probability algebras, random variable structures