• 1. College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083
    2. Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201
    3. University of Chinese Academy of Sciences, Beijing 100049
  • 摘要:

    全球生物多样性的急剧下降促使人们对生物多样性的保护日益重视。保护遗传学是濒危物种保护研究的重要手段, 它极大地促进了人们对保护生物学多个领域的认知。然而, 保护生物学的一些重大科学问题, 包括濒危植物的演化历史、濒危原因和过程以及适应性演化机制等仍有待进一步深入研究。近年来, 高通量测序技术和保护遗传学思想的交叉融合, 促进了保护基因组学的产生, 为深入探讨这些重要问题提供了新的方法和思路。本文简要综述了组学方法中的全基因组重测序方法在濒危植物保护研究中取得的一些重要进展, 以期推动我国濒危植物保护生物学的进一步发展。全基因组重测序作为目前保护基因组学方法中具有最高分辨力的一种方法, 在研究濒危植物系统发育和种群遗传结构、基因组多样性、种群演化历史、适应性演化和近交衰退等方面取得了一些重要进展, 这些研究确定了一些濒危物种的分类地位和种群保护单元, 揭示了它们的进化历史、濒危原因和过程, 阐明了部分适应性进化和近交衰退的遗传机制。由于重测序方法可以更加深入地窥探保护生物学的诸多问题, 随着测序技术进一步发展和费用的降低, 它必将成为保护生物学研究的主要技术手段。

    Abstract

    Background & Aims: Increasing attention is focused on global change and loss of biodiversity. Genetics is an important tool in the conservation of threatened species, which have greatly promoted our understanding of diverse areas in conservation biology. However, some key scientific issues in conservation biology, including evolutionary history, endangered mechanism, genetic basis of adaptive evolution and inbreeding depression, are remain to be understood. Spurred by technological advances in high-throughput sequencing, conservation genomics are developed by using of new genomic techniques to solve problems in conservation biology, providing new approaches to deep understanding of the key issues in conservation biology. This paper briefly summarizes the important research progress in the conservation genomics based on whole genome resequencing, aiming to promote the conservation biology of threatened plant in China.
    Progress: Whole genome resequencing, being the highest genomic resolution among current methods in conservation genomics, has made many significant advancements, including classification of phylogenetic relationships between unresolved taxa, the reconstruction of population structure, genomic diversity, demographic history, adaptive evolution and inbreeding depression. Based on these advancements, conservation taxa and conservation units are identified, the evolutionary history and endangered causes of species are revealed and the genetic basis of adaptive evolution and inbreeding depression are partly revealed.
    Prospect: As whole-genome resequencing provides deep insights into the key issues in conservation biology, with the improvements of even higher throughput and lower cost, whole-genome resequencing will be a routine task in conservation biology studies.

    Key words: whole genome resequencing, conservation genomics, endangered plants, adaptive evolution, inbreeding depression

    景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽 (2023) 全基因组重测序方法在濒危植物保护中的应用. 生物多样性, 31, 22679. DOI: 10.17520/biods.2022679 .

    Zhaoyang Jing, Keguang Cheng, Heng Shu, Yongpeng Ma, Pingli Liu (2023) Whole genome resequencing approach for conservation biology of endangered plants. Biodiversity Science, 31, 22679. DOI: 10.17520/biods.2022679 .

    图1 全基因组从头测序的受威胁植物统计。(a)已经全基因组测序的受威胁植物饼图。括号中的数字分别表示已经全基因组测序的受威胁植物物种数量及其所占总测序植物物种数量的比例。(b)《世界自然保护联盟红皮书》和2021年发布的《国家重点保护野生植物名录》收录的受威胁植物所属科统计图。图中的数字表示物种的数量。 Fig. 1 The species statistics with de novo whole-genome sequencing. (a) Comparison of threatened plant species and other plant species with de novo whole-genome sequencing. Values in bracket indicate the number of threatened plant species with de novo whole genome sequencing and its proportion to the total plant species with de novo whole genome sequencing. (b) The distribution of species with de novo whole-genome sequencing included in IUCN Red List of Threatened Species and the List of National Key Protected Wild Plants (2021) in different family. Values indicate the number of species in each family.

    图1 全基因组从头测序的受威胁植物统计。(a)已经全基因组测序的受威胁植物饼图。括号中的数字分别表示已经全基因组测序的受威胁植物物种数量及其所占总测序植物物种数量的比例。(b)《世界自然保护联盟红皮书》和2021年发布的《国家重点保护野生植物名录》收录的受威胁植物所属科统计图。图中的数字表示物种的数量。

    Fig. 1 The species statistics with de novo whole-genome sequencing. (a) Comparison of threatened plant species and other plant species with de novo whole-genome sequencing. Values in bracket indicate the number of threatened plant species with de novo whole genome sequencing and its proportion to the total plant species with de novo whole genome sequencing. (b) The distribution of species with de novo whole-genome sequencing included in IUCN Red List of Threatened Species and the List of National Key Protected Wild Plants (2021) in different family. Values indicate the number of species in each family.

    学名
    Scientific name
    濒危等级
    Endangered category
    保护等级
    Protection level
    θπ 样本量
    Sample size
    参考文献
    References
    野生稻 Oryza rufipogon 极危 CR Ⅱ级 Class II 0.003000 446 Huang et al, 2012
    天目铁木 Ostrya rehderiana 极危 CR I级 Class I 0.001660 13 Yang et al, 2018
    野生莲 Nelumbo nucifera - II级 Class II 0.002177 7 Huang et al, 2018
    鹅掌楸 Liriodendron chinense - II级 Class II 0.001280 14 Chen et al, 2019
    银杏 Ginkgo biloba 极危 CR I级 Class I 0.002110 545 Zhao et al, 2019
    水青树 Tetracentron sinense II级 Class II 0.012800 55 Liu et al, 2020
    细叶杨 Populus ilicifolia 易危 VU - 0.000830 19 Chen Z et al, 2020
    珙桐 Davidia involucrate - I级 Class I 0.005850 10 Chen Y et al, 2020
    连香树 Cercidiphyllum japonicum - II级 Class II 0.001100 82 Zhu et al, 2020
    小粒咖啡 Coffea arabica 濒危 EN - 0.003810 48 Huang et al, 2020
    朱红大杜鹃 Rhododendron griersonianum 极危 CR - 0.001940 31 Ma et al, 2021a
    胡桃 Juglans regia 易危 VU II级 Class II 0.000500 55 Bernard et al, 2021
    斧翅沙芥 Pugionium dolabratum - II级 Class II 0.013000 20 Hu et al, 2021
    Camellia sinensis - II级 Class II 0.006100 120 Lu et al, 2021
    野生荔枝 Litchi chinensis - II级 Class II 0.008300 38 Hu et al, 2022
    漾濞槭 Acer yangbiense 濒危 EN - 0.003130 105 Ma et al, 2022
    芒苞草 Acanthochlamys bracteata 易危 VU - 0.000460 14 Xu et al, 2022
    野大豆 Glycine soja - II级 Class II 0.001220 40 Wang et al, 2022

    表1 受威胁植物核酸多样性

    Table 1 Nucleic acid diversity of threatened plant species

    学名
    Scientific name
    濒危等级
    Endangered category
    保护等级
    Protection level
    θπ 样本量
    Sample size
    参考文献
    References
    野生稻 Oryza rufipogon 极危 CR Ⅱ级 Class II 0.003000 446 Huang et al, 2012
    天目铁木 Ostrya rehderiana 极危 CR I级 Class I 0.001660 13 Yang et al, 2018
    野生莲 Nelumbo nucifera - II级 Class II 0.002177 7 Huang et al, 2018
    鹅掌楸 Liriodendron chinense - II级 Class II 0.001280 14 Chen et al, 2019
    银杏 Ginkgo biloba 极危 CR I级 Class I 0.002110 545 Zhao et al, 2019
    水青树 Tetracentron sinense II级 Class II 0.012800 55 Liu et al, 2020
    细叶杨 Populus ilicifolia 易危 VU - 0.000830 19 Chen Z et al, 2020
    珙桐 Davidia involucrate - I级 Class I 0.005850 10 Chen Y et al, 2020
    连香树 Cercidiphyllum japonicum - II级 Class II 0.001100 82 Zhu et al, 2020
    小粒咖啡 Coffea arabica 濒危 EN - 0.003810 48 Huang et al, 2020
    朱红大杜鹃 Rhododendron griersonianum 极危 CR - 0.001940 31 Ma et al, 2021a
    胡桃 Juglans regia 易危 VU II级 Class II 0.000500 55 Bernard et al, 2021
    斧翅沙芥 Pugionium dolabratum - II级 Class II 0.013000 20 Hu et al, 2021
    Camellia sinensis - II级 Class II 0.006100 120 Lu et al, 2021
    野生荔枝 Litchi chinensis - II级 Class II 0.008300 38 Hu et al, 2022
    漾濞槭 Acer yangbiense 濒危 EN - 0.003130 105 Ma et al, 2022
    芒苞草 Acanthochlamys bracteata 易危 VU - 0.000460 14 Xu et al, 2022
    野大豆 Glycine soja - II级 Class II 0.001220 40 Wang et al, 2022
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nature Methods, 7, 248-249. Allendorf FW (2017) Genetics and the conservation of natural populations: Allozymes to genomes. Molecular Ecology, 26, 420-430. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697-709. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17, 81-92. Avise JC (2010) Perspective: Conservation genetics enters the genomics era. Conservation Genetics, 11, 665-669. Bao WQ, Ao D, Wuyun T, Wang L, Bai Y (2020) Development of 85 SNP markers for the endangered plant species Prunus mira (Rosaceae) based on restriction site-associated DNA sequencing (RAD-seq). Conservation Genetics Resources, 12, 525-527. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proceedings: Biological Sciences, 263, 1619-1626. Bernard A, Crabier J, Donkpegan ASL, Marrano A, Lheureux F, Dirlewanger E (2021) Genome-wide association study reveals candidate genes involved in fruit trait variation in Persian walnut ( Juglans regia L.). Frontiers in Plant Science, 11, 607213. Bongaarts J (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Population and Development Review, 45, 680-681. Cai CN, Xiao JH, Ci XQ, Conran JG, Li J (2021) Genetic diversity of Horsfieldia tetratepala (Myristicaceae), an endangered Plant Species with Extremely Small Populations to China: Implications for its conservation. Plant Systematics and Evolution, 307, 50. Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proceedings of the National Academy of Sciences, USA, 117, 13596-13602. Chen JH, Hao ZD, Guang XM, Zhao CX, Wang PK, Xue LJ, Zhu QH, Yang LF, Sheng Y, Zhou YW, Xu HB, Xie HQ, Long XF, Zhang J, Wang ZR, Shi MM, Lu Y, Liu SQ, Guan LH, Zhu QH, Yang LM, Ge S, Cheng TL, Laux T, Gao Q, Peng Y, Liu N, Yang SH, Shi JS (2018) Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nature Plants, 5, 18-25. Chen Y, Ma T, Zhang LS, Kang MH, Zhang ZY, Zheng ZY, Sun PC, Shrestha N, Liu JQ, Yang YZ (2020) Genomic analyses of a “living fossil”: The endangered dove-tree. Molecular Ecology Resources, 20, 756-769. Chen ZY, Ai FD, Zhang JL, Ma XZ, Yang WL, Wang WW, Su YT, Wang MC, Yang YZ, Mao KS, Wang QF, Lascoux M, Liu JQ, Ma T (2020) Survival in the tropics despite isolation, inbreeding and asexual reproduction: Insights from the genome of the world’s southernmost poplar ( Populus ilicifolia ). The Plant Journal, 103, 430-442. Chong ZC, Ruan J, Wu CI (2012) Rainbow: An integrated tool for efficient clustering and assembling RAD-seq reads. Bioinformatics, 28, 2732-2737. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4, 265-270. Combosch DJ, Lemer S, Ward PD, Landman NH, Giribet G (2017) Genomic signatures of evolution in Nautilus —An endangered living fossil. Molecular Ecology, 26, 5923-5938. Eaton DAR (2014) PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30, 1844-1849. Forester BR, Murphy M, Mellison C, Petersen J, Pilliod DS, Van Horne R, Harvey J, Funk WC (2022) Genomics- informed delineation of conservation units in a desert amphibian. Molecular Ecology, 31, 5249-5269. Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30, 1687-1699. Fuentes-Pardo AP, Ruzzante DE (2017) Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations. Molecular Ecology, 26, 5369-5406. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution, 27, 489-496. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17, 333-351. Hao YB, Jin H, Yang L, Li KX, Hu YB (2022) Research advances in conservation genetics and genomics of snow leopard ( Panthera uncia ). Acta Theriologica Sinica, 42, 508-518. (in Chinese with English abstract) Hohenlohe PA, Funk WC, Rajora OP (2021) Population genomics for wildlife conservation and management. Molecular Ecology, 30, 62-82. Hu GB, Feng JT, Xiang X, Wang JB, Salojärvi J, Liu CM, Wu ZX, Zhang JS, Liang XM, Jiang ZD, Liu W, Ou LX, Li JW, Fan GY, Mai YX, Chen CJ, Zhang XT, Zheng JK, Zhang YQ, Peng HX, Yao LX, Wai CM, Luo XP, Fu JX, Tang HB, Lan TY, Lai B, Sun JH, Wei YZ, Li HL, Chen JZ, Huang XM, Yan Q, Liu X, McHale LK, Rolling W, Guyot R, Sankoff D, Zheng CF, Albert VA, Ming R, Chen HB, Xia R, Li JG (2022) Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics, 54, 73-83. Hu Q, Ma Y, Mandakova T, Shi S, Chen C, Sun P, Zhang L, Feng L, Zheng Y, Feng X, Yang W, Jiang J, Li T, Zhou P, Yu Q, Wan D, Lysak MA, Xi Z, Nevo E, Liu J (2021) Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation. Proceedings of the National Academy of Sciences, USA, 118, e2025711118. Huang LF, Wang XY, Dong YP, Long YZ, Hao CY, Yan L, Shi T (2020) Resequencing 93 accessions of coffee unveils independent and parallel selection during Coffea species divergence. Plant Molecular Biology, 103, 51-61. Huang LY, Yang M, Li L, Li H, Yang D, Shi T, Yang PF (2018) Whole genome re-sequencing reveals evolutionary patterns of sacred lotus ( Nelumbo nucifera ). Journal of Integrative Plant Biology, 60, 2-15. Huang XH, Kurata N, Wei XH, Wang ZX, Wang AH, Zhao Q, Zhao Y, Liu KY, Lu HY, Li WJ, Guo YL, Lu YQ, Zhou CC, Fan DL, Weng QJ, Zhu CR, Huang T, Zhang L, Wang YC, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan XP, Xu Q, Dong GJ, Zhan QL, Li CY, Fujiyama A, Toyoda A, Lu TT, Feng Q, Qian Q, Li JY, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature, 490, 497-501. Jones MR, Good JM (2016) Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 25, 185-202. Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: Towards a landscape genomics approach to adaptation. Molecular Ecology, 16, 3955-3969. Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, Crandall KA, Durbin R, Edwards SV, Forest F, Gilbert MTP, Goldstein MM, Grigoriev IV, Hackett KJ, Haussler D, Jarvis ED, Johnson WE, Patrinos A, Richards S, Castilla-Rubio JC, van Sluys MA, Soltis PS, Xu X, Yang HM, Zhang GJ (2018) Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences, USA, 115, 4325-4333. Li A, Ge S (2002) Advances in plant conservation genetics. Biodiversity Science, 10, 61-71. (in Chinese with English abstract) Liu HL, Harris AJ, Wang ZF, Chen HF, Li ZA, Wei X (2022) The genome of the Paleogene relic tree Bretschneidera sinensis : Insights into trade-offs in gene family evolution, demographic history, and adaptive SNPs. DNA Research, 29, dsac003. Liu PL, Zhang X, Mao JF, Hong YM, Zhang RG, E YL, Nie S, Jia K, Jiang CK, He J, Shen W, He Q, Zheng W, Abbas S, Jewaria PK, Tian X, Liu CJ, Jiang X, Yin Y, Liu B, Wang L, Jin B, Ma Y, Qiu Z, Baluska F, Samaj J, He X, Niu S, Xie J, Xie L, Xu H, Kong H, Ge S, Dixon RA, Jiao Y, Lin J (2020) The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biology, 21, 291. Liu SL, Qiu N, Zhang SY, Zhao ZN, Zhou X (2022) Application of genomics technology in biodiversity conservation research. Biodiversity Science, 30, 22441. (in Chinese with English abstract) Lu LT, Chen HF, Wang XJ, Zhao YC, Yao XZ, Xiong B, Deng YL, Zhao DG (2021) Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits. Horticulture Research, 8, 190. Ma H, Liu YB, Liu DT, Sun WB, Liu XF, Wan YM, Zhang XJ, Zhang RG, Yun QZ, Wang JH, Li ZH, Ma YP (2021a) Chromosome-level genome assembly and population genetic analysis of a critically endangered Rhododendron provide insights into its conservation. The Plant Journal, 107, 1533-1545. Ma YP, Liu DT, Wariss HM, Zhang RG, Tao LD, Milne RI, Sun WB (2022) Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple. Molecular Ecology, 31, 767-779. Ma YP, Wariss HM, Liao RL, Zhang RG, Yun QZ, Olmstead RG, Chau JH, Milne RI, Van de Peer Y, Sun WB (2021b) Genome-wide analysis of butterfly bush ( Buddleja alternifolia ) in three uplands provides insights into biogeography, demography and speciation. New Phytologist, 232, 1463-1476. Meyer JY, Pouteau R, Vincent F (2022) Assessing habitat suitability for the translocation of Ochrosia tahitensis (Apocynaceae), a critically endangered endemic plant from the island of Tahiti (South Pacific). Journal for Nature Conservation, 68, 126198. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31, 3812-3814. Niu ZT, Zhu F, Fan YJ, Li C, Zhang BH, Zhu SY, Hou ZY, Wang MT, Yang JP, Xue QY, Liu W, Ding XY (2021) The chromosome-level reference genome assembly for Dendrobium officinale and its utility of functional genomics research and molecular breeding study. Acta Pharmaceutica Sinica B, 11, 2080-2092. Primmer CR (2009) From conservation genetics to conservation genomics. Annals of the New York Academy of Sciences, 1162, 357-368. Qi YX, Liu YB, Rong WH (2011) RNA-Seq and its applications: A new technology for transcriptomics. Hereditas (Beijing), 33, 1191-1202. (in Chinese with English abstract) Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nature Methods, 5, 16-18. Shear W, Werth A (2014) The evolutionary truth about living fossils. The American Scientist, 102, 434. Tan XX, Li M (2018) From conservation genetics to conservation genomics. Journal of Anhui University (Natural Science Edition), 42, 22-28. (in Chinese with English abstract) Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics, 158, 1811-1823. Wang GT, Wang ZF, Wang RJ, Liang D, Jiang GB (2019) Development of microsatellite markers for a monotypic and globally endangered species, Glyptostrobus pensilis (Cupressaceae). Applications in Plant Sciences, 7, e01217. Wang J, Hu ZB, Liao XL, Wang ZY, Li W, Zhang PP, Cheng H, Wang Q, Bhat JA, Wang H, Liu B, Zhang HY, Huang F, Yu DY (2022) Whole-genome resequencing reveals signature of local adaptation and divergence in wild soybean. Evolutionary Applications, 15, 1820-1833. Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M (2015) Exome sequencing: Current and future perspectives. 3G (Genes|Genomes|Genetics), 5, 1543-1550. Wei FW, Huang GP, Fan HZ, Hu YB (2021) Research advances and perspectives of conservation genomics and meta-genomics of threatened mammals in China. Acta Theriologica Sinica, 41, 581-590. (in Chinese with English abstract) Xu B, Liao M, Deng HN, Yan CC, Lv YY, Gao YD, Ju WB, Zhang JY, Jiang LS, Li X, Gao XF (2022) Chromosome- level de novo genome assembly and whole-genome resequencing of the threatened species Acanthochlamys bracteata (Velloziaceae) provide insights into alpine plant divergence in a biodiversity hotspot. Molecular Ecology Resources, 22, 1582-1595. Yang YZ, Ma T, Wang ZF, Lu ZQ, Li Y, Fu CX, Chen XY, Zhao MS, Olson MS, Liu JQ (2018) Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana . Nature Communications, 9, 5449. Zhao YP, Fan GY, Yin PP, Sun S, Li N, Hong XN, Hu G, Zhang H, Zhang FM, Han JD, Hao YJ, Xu QW, Yang XW, Xia WJ, Chen WB, Lin HY, Zhang R, Chen J, Zheng XM, Lee SMY, Lee J, Uehara K, Wang J, Yang HM, Fu CX, Liu X, Xu X, Ge S (2019) Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nature Communications, 10, 4201. Zhu SS, Chen J, Zhao J, Comes HP, Li P, Fu CX, Xie X, Lu RS, Xu WQ, Feng Y, Ye WQ, Sakaguchi S, Isagi Y, Li LF, Lascoux M, Qiu YX (2020) Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum . New Phytologist, 228, 1674-1689. 王婷, 夏增强, 舒江平, 张娇, 王美娜, 陈建兵, 王慷林, 向建英, 严岳鸿. 全基因组复制事件的绝对定年揭示莲座蕨属植物的迟滞演化 [J]. 生物多样性, 2021, 29(6): 722-734. 张玲玲, 刘子玥, 王瑞江. 广东兰科植物多样性保育现状 [J]. 生物多样性, 2020, 28(7): 787-795. 刘忠成, 张忠, 兰勇, 赵万义, 刘佳, 陈春泉, 廖文波, 王蕾. 罗霄山脉珍稀濒危重点保护野生植物的生存状况及保护策略 [J]. 生物多样性, 2020, 28(7): 867-875. 李媛媛, 刘超男, 王嵘, 罗水兴, 农寿千, 王静雯, 陈小勇. 分子标记在濒危物种保护中的应用 [J]. 生物多样性, 2020, 28(3): 367-375. 任海. 植物园与植物回归 [J]. 生物多样性, 2017, 25(9): 945-950. 陈玉凯, 杨小波, 李东海, 龙文兴. 海南岛维管植物物种多样性的现状 [J]. 生物多样性, 2016, 24(8): 948-956. 杨文忠, 向振勇, 张珊珊, 康洪梅, 史富强. 极小种群野生植物的概念及其对我国野生植物保护的影响 [J]. 生物多样性, 2015, 23(3): 419-425. 张荣京, 赵哲, 苏文拔, 邢福武. 海南甘什岭保护区珍稀濒危植物的分布与评估 [J]. 生物多样性, 2015, 23(1): 11-17. 李长昊, 程涛, 董文攀, 周世良. “中国珍稀濒危植物DNA条形码鉴定平台”简介 [J]. 生物多样性, 2014, 22(1): 110-110. 王蕾, 施诗, 廖文波, 陈春泉, 李贞. 井冈山地区珍稀濒危植物及其生存状况 [J]. 生物多样性, 2013, 21(2): 163-169. 黄宏文, 张征. 中国植物引种栽培及迁地保护的现状与展望 [J]. 生物多样性, 2012, 20(5): 559-571. 周翔, 高江云. 珍稀濒危植物的回归: 理论和实践 [J]. 生物多样性, 2011, 19(1): 97-105. 黄仕训, 陈泓, 唐文秀, 骆文华, 王燕. 狭叶坡垒生物生态学特征及致濒原因研究 [J]. 生物多样性, 2008, 16(1): 15-23.