要考高级数理逻辑了,和舍友整理了一波去年高级数理逻辑的答案,可能有错误。仅供参考,被坑了,概不负责。嘿嘿嘿。参考了王元元的《现代逻辑学》,李文生老师的PPT,和BigPan老师的讲义,北邮科技酒店的往年试题集合。
-
修改了简答题第一题中的问题,有朋友指出
\begin{aligned} C^* &= \neg(\Diamond A \rightarrow \Diamond B)^* \land (\Diamond(A \rightarrow B))^* \\ &= \neg(\neg(\Diamond A)^* \land (\Diamond B)^*)) \land \Box(A \rightarrow B)^* \\ &= \neg(\neg \Box A^* \land \Box B^*) \land \Box(\neg A^* \land B^*) \\ &= (\Box A^* \lor \neg \Box B^*) \land \Box \neg(A^* \lor \neg B^*) \\ \neg C^* &= \neg (\Box A^* \lor \neg \Box B^*) \lor \neg \Box \neg(A^* \lor \neg B^*) \\ &= \neg (\Box A^* \lor \neg \Box B^*) \lor \Diamond(A^* \lor \neg B^*) \\ &= \neg(\Box B^* \rightarrow \Box A^*) \lor \Diamond(B^* \rightarrow A^*) \\ &= (\Box B^* \rightarrow \Box A^*) \rightarrow \Diamond(B^* \rightarrow A^*) \end{aligned}
C
∗
¬
C
∗
=
¬
(
◊
A
→
◊
B
)
∗
∧
(
◊
(
A
→
B
)
)
∗
=
¬
(
¬
(
◊
A
)
∗
∧
(
◊
B
)
∗
)
)
∧
□
(
A
→
B
)
∗
=
¬
(
¬
□
A
∗
∧
□
B
∗
)
∧
□
(
¬
A
∗
∧
B
∗
)
=
(
□
A
∗
∨
¬
□
B
∗
)
∧
□
¬
(
A
∗
∨
¬
B
∗
)
=
¬
(
□
A
∗
∨
¬
□
B
∗
)
∨
¬
□
¬
(
A
∗
∨
¬
B
∗
)
=
¬
(
□
A
∗
∨
¬
□
B
∗
)
∨
◊
(
A
∗
∨
¬
B
∗
)
=
¬
(
□
B
∗
→
□
A
∗
)
∨
◊
(
B
∗
→
A
∗
)
=
(
□
B
∗
→
□
A
∗
)
→
◊
(
B
∗
→
A
∗
)
\begin{aligned} C &= (\Diamond A \rightarrow \Diamond B) \rightarrow \Diamond (A\rightarrow B) \\ \\ C^* &= \neg(\Diamond A \rightarrow \Diamond B)^* \land (\Diamond(A \rightarrow B))^* \\ &= \neg(\neg (\Diamond A)^*\land(\Diamond B)^*)\land \Box(A \rightarrow B)^* \\ &= \neg(\neg \Box A^* \land \Box B^*) \land \Box(\neg A^* \land B^*) \\ &= (\Box A^* \lor \neg \Box B^*) \land \Box\neg(A^* \lor \neg B^*) \\ \\ \neg C^* &= \neg(\Box A^* \lor \neg \Box B^*) \lor \neg\Box(\neg A^* \land B^*) \\ &= \neg(\Box B^* \rightarrow \Box A^*) \lor \neg\Box(\neg A^* \land B^*) \\ &= (\Box B^* \rightarrow \Box A^*) \rightarrow \neg\Box(\neg A^* \land B^*) \end{aligned}
C
C
∗
¬
C
∗
=
(
◊
A
→
◊
B
)
→
◊
(
A
→
B
)
=
¬
(
◊
A
→
◊
B
)
∗
∧
(
◊
(
A
→
B
)
)
∗
=
¬
(
¬
(
◊
A
)
∗
∧
(
◊
B
)
∗
)
∧
□
(
A
→
B
)
∗
=
¬
(
¬
□
A
∗
∧
□
B
∗
)
∧
□
(
¬
A
∗
∧
B
∗
)
=
(
□
A
∗
∨
¬
□
B
∗
)
∧
□
¬
(
A
∗
∨
¬
B
∗
)
=
¬
(
□
A
∗
∨
¬
□
B
∗
)
∨
¬
□
(
¬
A
∗
∧
B
∗
)
=
¬
(
□
B