一、第一种理解
相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。
KL散度是两个概率分布P和Q差别的非对称性的度量。
KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。
根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:
H(X)=∑
x∈X
P(x)log[1/P(x)]
在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:
D
KL
(Q||P)=∑
x∈X
Q(x)[log(1/P(x))] - ∑
x∈X
Q(x)[log[1/Q(x)]]=∑
x∈X
Q(x)log[Q(x)/P(x)]
由于-log(u)是凸函数,因此有下面的不等式
D
KL
(Q||P) = -∑
x∈X
Q(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = - log∑
x∈X
Q(x)P(x)/Q(x) = 0
即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。
===========================
举一个实际的例子吧:比如有四个类别,一个方法A得到四个类别的概率分别是0.1,0.2,0.3,0.4。另一种方法B(或者说是事实情况)是得到四个类别的概率分别是0.4,0.3,0.2,0.1,那么这两个分布的KL-Distance(A,B)=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)
这个里面有正的,有负的,可以证明KL-Distance()>=0.
从上面可以看出, KL散度是不对称的。即KL-Distance(A,B)!=KL-Distance(B,A)
KL散度是不对称的,当然,如果希望把它变对称,
Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2.
二、第二种理解
今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反之就越高。下面是熵的定义
如果一个随机变量
的可能取值为
,对应的概率为
,则随机变量
的熵定义为
有了信息熵的定义,接下来开始学习相对熵。
1. 相对熵的认识
相对熵又称互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度(即KL散度)等。设
和
是
取值的两个概率概率分布,则
对
的相对熵为
在一定程度上,熵可以度量两个随机变量的距离。KL散度是两个概率分布P和Q差别的非对称性的度量。KL散度是
用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q
表示数据的理论分布,模型分布,或P的近似分布。
2. 相对熵的性质
相对熵(KL散度)有两个主要的性质。如下
(1)尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即
(2)相对熵的值为非负值,即
在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下
3. 相对熵的应用
相对熵可以衡量两个随机分布之间的距离,当两个随机分布相同时,它们的相对熵为零,当两个随机分布的差别增
大时,它们的相对熵也会增大。所以相对熵(KL散度)可以用于比较文本的相似度,先统计出词的频率,然后计算
KL散度就行了。另外,在多指标系统评估中,指标权重分配是一个重点和难点,通过相对熵可以处理。
4.
交叉熵与相对熵
参考:
http://www.cnblogs.com/hxsyl/p/4910218.html
https://www.zhihu.com/question/41252833
ELBO(证据下界)
网上关于ELBO的内容较少,主要常出现在变分推断当中。
例如在用EM处理LDA主题模型时,
看看文档数据的对数似然函数
如下,为了简化表示,用
代替
,用来表示
对于变分分布
的期望。
其中,从第(5)式到第(6)式用到了Jensen不等式:
一般把第(7)式记为:
由于
是我们的对数似然的一个下界(第6式),所以这个L一般称为ELBO(Evidence Lower BOund)。那么这个ELBO和我们需要优化的的KL散度有什么关系呢?注意到:
在(10)式中,由于对数似然部分和我们的KL散度无关,可以看做常量,因此我们希望最小化KL散度等价于最大化ELBO。那么我们的变分推断最终等价的转化为要求ELBO的最大值。现在我们开始关注于极大化ELBO并求出极值对应的变分参数λ,ϕ,γ。
参考文献:
https://zhuanlan.zhihu.com/p/29932017