1.
张物华, 李锵, 关欣 基于多尺度卷积神经网络的X光图像中肺炎病灶检测
激光与光电子学进展
2020;
57
(8):179–186.
[
Google Scholar
]
2.
黄欣, 方钰, 顾梦丹 基于卷积神经网络的 X 线胸片疾病分类研究
系统仿真学报
2020;
32
(6):1188–1194.
[
Google Scholar
]
3.
Messina P, Pino P, Parra D, et al. A survey on deep learning and explainability for automatic report generation from medical images. ACM Computing Surveys, 2020, arXiv: 2010.10563.
4.
Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint, 2017, arXiv: 1711.05225.
5.
Demner-Fushman D, Kohli M D, Rosenman M B, et al Preparing a collection of radiology examinations for distribution and retrieval.
Journal of the American Medical Informatics Association.
2016;
23
(2):304–310. doi: 10.1093/jamia/ocv080.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Vinyals O, Toshev A, Bengio S, et al. Show and tell: a neural image caption generator//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2015: 3156-3164.
7.
Li C Y, Liang X, Hu Z, et al. Hybrid retrieval-generation reinforced agent for medical image report generation//Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS’18), 2018: 1537-1547.
8.
Han K, Wang Y, Chen H, et al A survey on vision transformer.
IEEE Transactions on Pattern Analysis and Machine Intelligence.
2023;
45
(1):87–110. doi: 10.1109/TPAMI.2022.3152247.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
He X, Yang Y, Shi B, et al VD-SAN: visual-densely semantic attention network for image caption generation.
Neurocomputing.
2019;
328
:48–55. doi: 10.1016/j.neucom.2018.02.106.
[
CrossRef
]
[
Google Scholar
]
10.
Alfarghaly O, Khaled R, Elkorany A, et al Automated radiology report generation using conditioned transformers.
Informatics in Medicine Unlocked.
2021;
24
:100557. doi: 10.1016/j.imu.2021.100557.
[
CrossRef
]
[
Google Scholar
]
11.
Valanarasu J M J, Oza P, Hacihaliloglu I, et al. Medical transformer: gated axial-attention for medical image segmentation//Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Springer, 2021: 36-46.
12.
Hou B, Kaissis G, Summers R M, et al. Ratchet: medical transformer for chest X-ray diagnosis and reporting//Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Springer, 2021: 293-303.
13.
Srinivasan P, Thapar D, Bhavsar A, et al. Hierarchical X-ray report generation via pathology tags and multi head attention//Proceedings of the Asian Conference on Computer Vision (ACCV 2020), Springer, 2020: 600-616.
14.
Liu F, Wu X, Ge S, et al. Exploring and distilling posterior and prior knowledge for radiology report generation// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2021: 13753-13762.
15.
Li J, Li S, Hu Y, et al. A self-guided framework for radiology report generation//Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Springer, 2022: 588-598.
16.
You D, Liu F, Ge S, et al. Aligntransformer: Hierarchical alignment of visual regions and disease tags for medical report generation.//Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Springer, 2021: 72-82.
17.
Chen Z, Shen Y, Song Y, et al. Cross-modal memory networks for radiology report generation// The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021), 2022. arXiv: 2204.13258.
18.
Wang X, Peng Y, Lu L, et al. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 2097-2106.
19.
Johnson A E W, Pollard T J, Berkowitz S J, et al MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports.
Scientific Data.
2019;
6
(1):317. doi: 10.1038/s41597-019-0322-0.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows// Proceedings of the IEEE/CVF international conference on computer vision, IEEE, 2021, 10012-10022.
21.
Devlin J, Chang M W, Lee K, et al. Bert: pre-training of deep bidirectional transformers for language understanding// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL Anthology, 2019: 4171-4186.
22.
Silva Barbon R, Akabane A T Towards transfer learning techniques-BERT, DistilBERT, BERTimbau, and DistilBERTimbau for automatic text classification from different languages: a case study.
Sensors.
2022;
22
(21):8184. doi: 10.3390/s22218184.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Chen Z, Song Y, Chang T H, et al. Generating radiology reports via memory-driven transformer// Conference on Empirical Methods in Natural Language Processing (EMNLP-2020), 2020. arXiv: 2010.16056.
24.
Lee D, Tian Z, Xue L, et al. Enhancing content preservation in text style transfer using reverse attention and conditional layer normalization// The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021), 2021. arXiv: 2108.00449.
25.
Lee J, Yoon W, Kim S, et al BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics.
2020;
36
(4):1234–1240. doi: 10.1093/bioinformatics/btz682.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Yang S, Wu X, Ge S, et al Radiology report generation with a learned knowledge base and multi-modal alignment.
Medical Image Analysis.
2023;
86
:102798. doi: 10.1016/j.media.2023.102798.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
Papineni K, Roukos S, Ward T, et al. BLEU: a method for automatic evaluation of machine translation// Proceedings of the Annual Meeting of the Association for Computational Linguistics, ACL, 2002: 311-318.
28.
Banerjee S, Lavie A. METEOR: an automatic metric for MT evaluation with improved correlation with human judgments//Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Association for Computational Linguistics, 2005: 65-72.
29.
Lin C Y. ROUGE: a package for automatic evaluation of summaries. Text summarization branches out, Association for Computational Linguistics, 2004: 74-81.
30.
He Tong, Zhang Zhi, Zhang Hang, et al. Bag of tricks for image classification with convolutional neural networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 558-567.
31.
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
32.
Huang Gao, Liu Zhuang,Van Der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 2261-2269.
33.
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale//International Conference on Learning Representations, ICLR, 2021: 1-22.
34.
Selvaraju RR, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization.//Proceedings of the IEEE International Conference on Computer Vision, IEEE, 2017: 618-626.