The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Beijing Da Xue Xue Bao Yi Xue Ban. 2023 Feb 18; 55(1): 108–113.
Published online 2022 Dec 1. Chinese. doi: 10.19723/j.issn.1671-167X.2023.01.016
PMCID: PMC9894811

Language: Chinese | English

上颌中切牙全瓷冠牙体预备学习曲线的预测、分析与应用

Prediction, analysis and application of learning curve of tooth preparation for all ceramic crowns of maxillary central incisors

吴 思妤

北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Find articles by 吴 思妤

李 娅宁

北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Find articles by 李 娅宁

张 晓

北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Find articles by 张 晓

吕 珑薇

北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Find articles by 吕 珑薇

刘 云松

北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Find articles by 刘 云松

叶 红强

北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Find articles by 叶 红强

周 永胜

北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China 北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China 162.50 (57.44, 69.83)0.002270.56 (66.97, 73.44)0.005373.20 (70.52, 77.13)0.005475.40 (72.14, 81.44)0.028576.21 (73.59, 83.04)0.136676.86 (74.80, 84.01)0.583777.40 (75.83, 85.57)0.583877.88 (76.60, 86.81)0.433978.65 (77.31, 87.91)0.3881079.35 (77.98, 88.91)0.3881179.99 (78.54, 89.82)0.3471280.58 (78.94, 90.65)0.1821381.12 (79.35, 91.42)0.1581481.62 (79.78, 92.14)< 0.050 * 1582.09 (80.18, 92.81)0.0191682.59 (80.55, 93.44)0.0121783.08 (80.91, 94.04)0.0081883.55 (81.23, 94.61)0.0051983.99 (81.54, 95.14)0.0042084.42 (81.82, 95.66)0.0042184.82 (82.07, 96.15)0.0032285.21 (82.31, 96.62)0.0032385.55 (82.53, 97.16)0.0022485.76 (82.72, 97.20)0.0022585.96 (82.93, 97.23)0.0022686.16 (83.12, 97.26)0.0022786.34 (83.30, 97.29)0.0022886.52 (83.48, 97.34)0.0022986.69 (83.65, 97.43)0.0023086.86 (83.81, 97.51)0.002

2.5. 样本量充分性验证

对样本量使用事后分析,按照目前的样本量12,最少训练次数时可以达到效应量0.8和统计功效power值0.83的水平,表明样本量符合统计学要求。

3. 讨论

一直以来,在仿真头颅模型上进行牙体预备技能训练是口腔修复实践技能训练中不可缺少的重要内容 [ 1 ] 。然而,目前关于使用仿真头颅模型进行牙体预备的学习曲线的研究较少,难以评价牙体预备训练的效果。

学习曲线不仅能通过个体学习曲线直观地呈现每一名研究对象的学习过程,同时通过总体学习曲线可以评价仿真头颅模型在牙体预备训练中的效果。目前,学习曲线已用于评估口内扫描仪扫描时长变化与练习次数的关系 [ 5 ] 、评价龋病洞型预备的教学效果 [ 6 ] 、预测CAD软件修复体设计时长 [ 7 - 8 ] 等,其中也有对全冠牙体预备学习曲线的观察性研究 [ 2 ] 。然而,现有的全冠牙体预备学习曲线研究受观察次数限制,不足以反映学生牙体预备全过程技能水平的变化 [ 2 ] 。本研究通过适当的牙体预备训练次数的分数,利用学习曲线模型,预测牙体预备的学习曲线,突破了训练次数的限制,将整个学习阶段纳入。Wright学习曲线模型作为最经典的学习曲线模型,具有较高的准确性,但是Wright学习曲线模型结果只能预测前几次训练的牙体预备分数平均值,无法预测每一次训练的牙体预备分数,故本研究对原始模型进行了改良和推演。根据改良的学习曲线模型,预测至25次时发现所有研究对象均已达到合格的考核标准(80分),为了保证学习曲线的完整性,故本研究选择预测至30次,并绘制30次牙体预备训练的学习曲线。

现有国内外关于全冠牙体预备学习曲线的研究中,刘星纲等 [ 2 ] 的研究由于未应用学习曲线进行技能水平变化的预测,无法对两者结果直接进行比较。本研究结果表明,牙体预备训练的学习曲线呈上升趋势,同时与考核标准(80分)相比,参加口腔住院医师规范化培训的研究生在第5~13次的牙体预备训练差异没有统计学意义,第1~4次训练与第14~30次训练之后牙体预备分数的差异有统计学意义,结合学习曲线呈上升趋势的特点,可以认为第1~4次训练得分未达到考核标准,第14~30次训练得分高于考核标准,因此认为参加口腔住院医师规范化培训的研究生经过至少14次操作训练后基本掌握了前牙牙体预备技能。

本研究仍存在一定的局限性,利用学习曲线模型绘制的学习曲线为理想状态优化过后的学习曲线,而在实际学习过程中的学习曲线应该为波动上升,故利用学习曲线模型绘制的学习曲线仅表示一种总体的趋势与预测,并不能完全真实反映具体某个个体的实际情况。虽然本研究得出达到考核标准所需的最少训练次数为14次,但由于临床实际与训练环境存在一定差异,所以达到考核标准并不意味着可以胜任临床要求,培训者为满足临床要求以后仍需不断训练。

综上所述,利用改良Wright学习曲线模型预测参加口腔住院医师规范化培训的研究生进行上颌中切牙全瓷冠牙体预备训练的学习曲线呈上升趋势,预测需要经过至少14次操作训练后牙体预备技能达到考核标准。

Funding Statement

北京大学口腔医学院教育教学改革项目(2022-ZD-01)、北京大学医学部教育教学研究课题(2022-ZD-05)和北京市住院医师规范化培训质量提高项目(2022-TGXM-02)

Funding Statement

Supported by the Teaching Reformation Fund of Peking University School and Hospital of Stomatology (2022-ZD-01), Peking University Health Science Center Medical Education Research Funding Project (2022-ZD-05), and the Quality Improvement Project of Standardized Training of Residents of Beijing (2022-TGXM-02)

References

1. 周 永胜, 江 泳, 徐 军, et al. 仿真头颅模型在口腔修复学临床前期教学中的应用 中华医学教育杂志 2006; 26 (3):74–76. doi: 10.3760/cma.j.issn.1673-677X.2006.03.031. [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. 刘 星纲, 刘 利霞, 魏 永杰. 浅析研究生修复实习中牙体预备的学习曲线 北京口腔医学 2018; 26 (4):236–237. [ Google Scholar ]
3. Wright TP. Factors affecting the cost of airplanes. J Astronaut Sci. 1936; 3 (4):122–128. [ Google Scholar ]
4. Sun TM, Lan TH, Pan CY, et al. Dental implant navigation system guide the surgery future. Kaohsiung J Med Sci. 2018; 34 (1):56–64. doi: 10.1016/j.kjms.2017.08.011. [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Lim JH, Park JM, Kim M, et al. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience. J Prosthet Dent. 2018; 119 (2):225–232. doi: 10.1016/j.prosdent.2017.05.002. [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Ben-Gal G, Katorza L, Weiss EI, et al. Testing motor learning curves among dental students. J Dent Educ. 2017; 81 (10):1171–1178. doi: 10.21815/JDE.017.076. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Son K, Lee WS, Lee KB. Prediction of the learning curves of 2 dental CAD software programs. J Prosthet Dent. 2019; 121 (1):95–100. doi: 10.1016/j.prosdent.2018.01.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Son K, Lee KB. Prediction of learning curves of 2 dental CAD software programs, part 2: Differences in learning effects by type of dental personnel. J Prosthet Dent. 2020; 123 (5):747–752. doi: 10.1016/j.prosdent.2019.05.026. [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for complete crowns: An art form based on scientific principles. J Prosthet Dent. 2001; 85 (4):363–376. doi: 10.1067/mpr.2001.114685. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. 赵 铱民. 口腔修复学. 北京: 人民卫生出版社; 2012. pp. 96–97. [ Google Scholar ]
11. 周 永胜. 口腔修复学. 北京: 北京大学医学出版社; 2020. pp. 87–89. [ Google Scholar ]
12. Al Amri MD, Sherfudhin HR, Habib SR. Effects of evaluator's fatigue and level of expertise on the global and analytical evaluation of preclinical tooth preparation. J Prosthodont. 2018; 27 (7):636–643. doi: 10.1111/jopr.12558. [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. 李 坚, 李 泽. 学习曲线与进步函数: 考虑技术进步因素的优化方法 水利电力机械 1997;(1):3-9, 11. [ Google Scholar ]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center