於本研究中,首先使用模擬軟體MATLAB(R2023b)中的Simulink模擬太陽能光電(PV)系統在三種輻照度下的功率曲線,輻照度依序為1000W/m2、800W/m2以及600W/m2,此舉乃為了驗證模擬架構的可靠性和有效性。透過將Simulink模擬出的數據匯出至MATLAB工作區,在MATLAB工作區中使用蟻群演算法(Ant colony optimization,ACO)進行最大功率點追蹤(Maximum Power Point tracking,MPPT)。並從模擬結果中探討不同螞蟻數量,分別為20隻、15隻與10隻。以及不同迭代次數,分別為迭代20次、迭代15次和迭代10次,影響模擬結果之原因。
接著我們將擾動觀察法(P&O)和蟻群演算法(ACO)做為混合方法,透過先將功率曲線輸入至擾動觀察法(P&O)之Simulink模組中,降低搜索之範圍。隨後,將功率曲線匯出至MATLAB工作區,再以MATLAB工作區中的蟻群演算法(ACO)執行最大功率點追蹤(MPPT),並得到其模擬結果。
最後,我們將蟻群演算法(ACO)和混合方法之模擬結果進行比較,展示不論是較容易收斂的環境下,或是難以收斂的環境下,混合方法之平均功率相較於傳統蟻群演算法(ACO)皆有提升,提升值約落在0.4%~9%不等。此結果進一步驗證了此混合方法相較於傳統的蟻群演算法(ACO)有較佳的穩定性和效率。
In this study, we use the simulation software MATLAB (R2023b) and Simulink to simulate the power curves of a photovoltaic (PV) system under three different irradiance levels: 1000W/m², 800W/m², and 600W/m². This approach aims to verify the reliability and effectiveness of the simulation framework. By exporting the data simulated in Simulink to the MATLAB workspace, then we employ the Ant Colony Optimization (ACO) algorithm for Maximum Power Point Tracking (MPPT) in the MATLAB workspace. The simulation results are analyzed to explore the effects of different numbers of ants, specifically 20, 15, and 10 ants, and different iterations, specifically 20, 15, and 10 iterations, on the simulation outcomes.
Next, we employ a hybrid method combining the Perturb and Observe (P&O) algorithm with the Ant Colony Optimization (ACO) algorithm. Initially, the power curves are input into the Simulink module of the P&O algorithm to reduce the search range. Subsequently, the power curves are exported to the MATLAB workspace, where the ACO algorithm is used for Maximum Power Point Tracking (MPPT) to obtain the simulation results.
Finally, we compare the simulation results of the Ant Colony Optimization (ACO) algorithm and the hybrid method , demonstrating that the hybrid method achieves an improvement in average power output compared to the traditional Ant Colony Optimization (ACO) algorithm. This improvement is observed in both environments that are relatively easy to converge and those that are difficult to converge, with an increase ranging from approximately 0.4% to 9%. These results further validate that the hybrid method offers superior stability and efficiency compared to the traditional ACO algorithm.
[1]S. LaRose, "International Energy Outlook 2021 (IEO2021)," Washington, DC, 2021.
[2] I. Mead, "International energy outlook 2017," U.S. Energy Information Administration, 2017.
[3]M. A. Sattar, M. Sameeroddin, M. K. G. Deshmukh, and M. A.Sami,“Renewable energy and its industrial applications,” Int. Res. J. Eng. Technol. (IRJET), vol. 7, no. 6, pp. 6042-6046, 2020.
[4] V. Sebestyén, "Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, vol. 151, 2021, Art. no. 111626. doi: 10.1016/j.rser.2021.111626.
[5]M. Shahabuddin, M. A. Alim, T. Alam, M. Mofijur, S. F. Ahmed, and G. Perkins,
"A critical review on the developmentand challenges of concentrated solar power technologies," Sustainable Energy Technologies and Assessments, vol. 47,p.101434, 2021.
[6]M. Sarvi and A. Azadian, "A comprehensive review and classified comparison of MPPT algorithms in PVsystems,“Energy Syst.,vol.13,pp.281320,2022.https://doi.
org/10.1007/s12667-021-00427-x
[7]A. S. Al-Ezzi and M. N. M. Ansari, "Photovoltaic Solar Cells: A Review," Applied System Innovation, vol. 5, no. 4,p. 67, 2022.https://doi.org/10.3390/asi5040067
[8]S. Bhattacharyya, D. S. Kumar P, S. Samanta and S. Mishra, "Steady Output and Fast Tracking MPPT (SOFT-MPPT) for P&O and InC Algorithms," IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 293-302, Jan. 2021,
doi: 10.1109/TSTE.2020.2991768.
[9]Z. Liu, Y. -P. Hsu and M. M. Hella, "A Thermal/RF Hybrid Energy Harvesting
System With Rectifying-Combination and Improved Fractional-OCV MPPT
Method," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3352-3363, Oct. 2020, doi: 10.1109/TCSI.2020.2982403.
[10]A. Vijayakumari, "A non-iterative MPPT of PV array with online measured short
circuit and open circuit quantities," Journal of King Saud University -Engineering Sciences, vol. 33, no. 3, pp. 176-185, 2021. doi: 10.1016/j.jksues.2020.04.007.
[11]K. Xia, Y. Li and B. Zhu, "Improved Photovoltaic MPPT Algorithm Based on Ant Colony Optimization and Fuzzy Logic Under Conditions of Partial Shading,“ IEEE Access, vol. 12, pp. 44817-44825, 2024, doi:10.1109/ACCESS.2024.3381345.
[12]R. K. Phanden, L. Sharma, J. Chhabra, and H. İ. Demir, "A novel modified ant colony optimization based maximum power point tracking controller for photovoltaic systems," Materials Today: Proceedings, vol. 38, no. 1, pp. 89-93, 2021, doi: 10.1016/j.matpr.2020.06.020.
[13]H. Hasan, H. Suyono, and A. Lomi, "Optimizing Maximum Power Point Tracking on Photovoltaic Arrays using Ant Colony Optimization and Particle Swarm Optimization Algorithms," J. Sci. Appl. Eng., vol. 5, no. 1, p. 7, 2022.
[14]K.-H. Chao and M. N. Rizal, "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions,“ Energies, vol. 14, no. 10, p. 2902, 2021.https://doi.org/10.3390/en14102902
[15]N. Karami, N. Moubayed, and R. Outbib, “General review and classification of different MPPT Techniques," Renewable and Sustainable Energy Reviews, vol. 68, pt. 1, pp. 1-18, 2017. https://doi.org/10.1016/j.rser.2016.09.132.
[16]S. Motahhir, A. El Hammoumi, and A. El Ghzizal, "The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm," Journal of Cleaner Production, vol. 246, p. 118983, 2020. https://doi.org/10.1016/j.jclepro.2019.118983.
[17]R. Kahani, M. Jamil and M. T. Iqbal, "An Improved Perturb and Observed Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems," Journal of Modern Power Systems and Clean Energy, vol. 11, no. 4, pp. 1165-1175, July 2023, doi: 10.35833/MPCE.2022.000245.
[18]E. E. A.-R. Y. Essam E. M. Mohamed, "Hybrid and Adaptive P&O Maximum Power Point Tracking Techniques for PVGeneration Systems," TURCOMAT, vol. 12, no. 6, pp. 1694-1707, Apr. 2021.
[19]A. N. Mahmod Mohammad, M. A. Mohd Radzi, N. Azis, S. Shafie, and M. A. Atiqi Mohd Zainuri, "An enhanced adaptive perturb and observe technique for efficient maximum power point tracking under partial shading conditions," Applied Sciences, vol. 10, no. 10, p. 3912, 2020. doi: 10.3390/app10113912.
[20]C. Yanarates, Y. Wang and Z. Zhou, "Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller-Based Variable Perturbation Size Real-Time Adaptive Perturb and Observe (P&O) MPPT Algorithm for PV Systems,"IEEE Access, vol. 9, pp. 138468-138482, 2021, doi:10.1109/ACCESS.2021.3119042.
[21]M. Gunasekaran, V. Krishnasamy, S. Selvam, D. J. Almakhles and N.Anglani,
"An Adaptive Resistance Perturbation Based MPPT Algorithm for Photovoltaic Applications," IEEE Access, vol. 8, pp. 196890-196901, 2020,doi: 10.1109/ACCESS.2020.3034283.
[22]O. A. Ba, A. Ndiaye, A. Ba, E. H. M. Ndiaye and M. A. Tankari, "Optimization of the P&O-MPPT controller by the adaptivemethod (Ad-P&O) for stand-alone PV systems," in: 2023 11th International Conference on Smart Grid (icSmartGrid) , Paris,France, 2023, pp. 1-8, doi: 10.1109/icSmartGrid58556.2023.10171074.
[23]M. Dorigo and L. M. Gambardella, "Ant colonies for the travelling salesman problem," Biosystems, vol. 43, no. 2, pp. 73-81,1997.ISSN: 0303-2647.doi: 10.1016/S0303-2647(97)01708-5.https://www.sciencedirect.com/science/article/
pii/S0303264797017085
[24]B. van Veen, M. Emmerich, Z. Yang, T. Bäck, and J. Kok, "Ant Colony Algorithms for the Dynamic Vehicle Routing Problem with Time Windows," in Natural and Artificial Computation in Engineering and Medical Applications: 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2013, Mallorca, Spain, June 10-14, 2013.Proceedings, Part II*, vol. 7931, J.M. Ferrández Vicente, J.R. Álvarez Sánchez, F. de la Paz López, and F.J. Toledo Moreo, Eds.,Springer, Berlin, Heidelberg, 2013, pp. 1-10. doi: 10.1007/978-3-642-38622-0_1.
[25]M. López-Ibáñez and T. Stützle, "An experimental analysis of design choices of multi-objective ant colony optimizationalgorithms," Swarm Intell, vol. 6, pp. 207–232, 2012. https://doi.org/10.1007/s11721-012-0070-7
[26]J.G. Falcón-Cardona and C.A. Coello Coello, "A new indicator-based many-objective ant colony optimizer for continuoussearch spaces," Swarm Intell, vol. 11, pp. 71–100, 2017. https://doi.org/10.1007/s11721-017-0133-x
[27]T. Liao, M. A. Montes de Oca, D. Aydin, T. Stützle, and M. Dorigo, "An incremental ant colony algorithm with local search for continuous optimization," in Proceedings of the 13th annual conference on Genetic and evolutionary computation (GECCO '11), New York, NY, USA, 2011, pp. 125–132. https://doi.org/10.1145/2001576.2001594
[28]T. Liao, T. Stützle, M. A. Montes de Oca, and M. Dorigo, "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, vol. 234, no. 3, pp. 597-609, 2014, doi: 10.1016/j.ejor.2013.10.024.
[29]U. Kumar, Jayadeva, and S. Soman, "Enhancing IACOR Local Search by Mtsls1-BFGS for Continuous Global Optimization," in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO '15), New York,
NY, USA, 2015, pp. 33–40. https://doi.org/10.1145/2739480.2754689
[30]U. Kumar, S. Soman, and Jayadeva, "Benchmarking NLopt and state-of-the-art algorithms for continuous global optimization via IACOR," Swarm and Evolutionary Computation, vol. 27, pp. 116-131, 2016, doi:10.1016/j.swevo.2015.10.005.
[31]Q. Yang et al., "Adaptive Multimodal Continuous Ant Colony Optimization," IEEE Transactions on Evolutionary Computation, vol. 21, no. 2, pp. 191-205, April 2017, doi: 10.1109/TEVC.2016.2591064.
[32]K. Y. Wong and Komarudin, "Parameter tuning for ant colony optimization: A review," in 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, pp. 542-545, doi: 10.1109/ICCCE.2008.4580662.
[33]S. Ebadinezhad, "DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem," Engineering Applications of Artificial Intelligence, vol. 92, p. 103649, 2020. ISSN: 0952-1976.
doi: 10.1016/j.engappai.2020.103649.
[34]J. Yu, R. Li, Z. Feng, A. Zhao, Z. Yu, Z. Ye, and J. Wang, "A novel parallel ant colony optimization algorithm for warehouse path planning," Journal of Control Science and Engineering, vol. 2020, no. 1, pp. 5287189, 2020.
[35]P. Tomanová and V. Holý, "Ant colony optimization for time-dependent travelling salesman problem," in Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, pp. 47-51, March 2020.
[36]W. Li, L. Xia, Y. Huang, et al., "An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems," J. Ambient Intell. Human Comput., vol. 13, pp. 1557–1571,2022. https://doi.org/10.1007/s12652-021-031-20-0
[37]M. H. Mousa and M. K. Hussein, "Efficient UAV-based mobile edge computing using differential evolution and ant colony optimization," PeerJ Computer Science, vol. 8, p. e870, 2022. doi: 10.7717/peerj-cs.870.
[38]P. T. szemes and M. Melhem, "Analyzing and modeling PV with “P&O” MPPT Algorithm by MATLAB/SIMULINK," in 2020 3rd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS), Gjovik, Norway, 2020,pp. 1-6,doi: 10.1109/SIMS49386.2020.9121579.
[39]Dong Wei, Miaoyu Wei, Hui Cai, Xin Zhang, and Lihong Chen, "Parameters extraction method of PV model based on key points of I-V curve," Energy Conversion and Management, vol. 209, 2020, Art. no. 112656, ISSN 0196-8904.doi: 10.1016/j.enconman.2020.112656.
[40]Dhieb, M. Yaich, M. Bouzguenda and M. Ghariani, "MPPT Optimization using Ant Colony Algorithm: Solar PV applications," in 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse,Tunisia, 2022, pp. 503-507, doi:10.1109/STA56120.2022.10019072.