相关文章推荐
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
:
twitter line
研究生: 陳鼎裕
研究生(外文): CHEN, TING-YU
論文名稱: 基於MATLAB模型比較模擬不同方法以改善最大功率點追蹤(MPPT)效率之研究
論文名稱(外文): The Study of Simulating and Comparing Different Methods to Improve Maximum Power Point Tracking (MPPT) Efficiency Based on MATLAB Model
指導教授: 張忠誠 張忠誠引用關係 何志傑 何志傑引用關係
指導教授(外文): CHANG, CHUNG-CHENG HO, JYH-JIER
口試委員: 張忠誠 何志傑 鄭遠東 王盛時
口試委員(外文): CHANG, CHUNG-CHENG HO, JYH-JIER CHENG, YUANG-TUNG WANG, SHENG-SHIH
口試日期: 2024-07-04
學位類別: 碩士
校院名稱: 國立臺灣海洋大學
系所名稱: 電機工程學系
學門: 工程學門
學類: 電資工程學類
論文種類: 學術論文
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 73
中文關鍵詞: 最大功率點追蹤 蟻群演算法 擾動觀察法 太陽能光電系統
外文關鍵詞: Maximum Power Point Tracking (MPPT) Ant Colony Optimization (ACO) Perturb and Observe (P&O) Photovoltaic (PV) System
相關次數:
  • 被引用 被引用:0
  • 點閱 點閱:8
  • 評分 評分:
  • 下載 下載:0
  • 收藏至我的研究室書目清單 書目收藏:0
於本研究中,首先使用模擬軟體MATLAB(R2023b)中的Simulink模擬太陽能光電(PV)系統在三種輻照度下的功率曲線,輻照度依序為1000W/m2、800W/m2以及600W/m2,此舉乃為了驗證模擬架構的可靠性和有效性。透過將Simulink模擬出的數據匯出至MATLAB工作區,在MATLAB工作區中使用蟻群演算法(Ant colony optimization,ACO)進行最大功率點追蹤(Maximum Power Point tracking,MPPT)。並從模擬結果中探討不同螞蟻數量,分別為20隻、15隻與10隻。以及不同迭代次數,分別為迭代20次、迭代15次和迭代10次,影響模擬結果之原因。
接著我們將擾動觀察法(P&O)和蟻群演算法(ACO)做為混合方法,透過先將功率曲線輸入至擾動觀察法(P&O)之Simulink模組中,降低搜索之範圍。隨後,將功率曲線匯出至MATLAB工作區,再以MATLAB工作區中的蟻群演算法(ACO)執行最大功率點追蹤(MPPT),並得到其模擬結果。
最後,我們將蟻群演算法(ACO)和混合方法之模擬結果進行比較,展示不論是較容易收斂的環境下,或是難以收斂的環境下,混合方法之平均功率相較於傳統蟻群演算法(ACO)皆有提升,提升值約落在0.4%~9%不等。此結果進一步驗證了此混合方法相較於傳統的蟻群演算法(ACO)有較佳的穩定性和效率。

In this study, we use the simulation software MATLAB (R2023b) and Simulink to simulate the power curves of a photovoltaic (PV) system under three different irradiance levels: 1000W/m², 800W/m², and 600W/m². This approach aims to verify the reliability and effectiveness of the simulation framework. By exporting the data simulated in Simulink to the MATLAB workspace, then we employ the Ant Colony Optimization (ACO) algorithm for Maximum Power Point Tracking (MPPT) in the MATLAB workspace. The simulation results are analyzed to explore the effects of different numbers of ants, specifically 20, 15, and 10 ants, and different iterations, specifically 20, 15, and 10 iterations, on the simulation outcomes.
Next, we employ a hybrid method combining the Perturb and Observe (P&O) algorithm with the Ant Colony Optimization (ACO) algorithm. Initially, the power curves are input into the Simulink module of the P&O algorithm to reduce the search range. Subsequently, the power curves are exported to the MATLAB workspace, where the ACO algorithm is used for Maximum Power Point Tracking (MPPT) to obtain the simulation results.
Finally, we compare the simulation results of the Ant Colony Optimization (ACO) algorithm and the hybrid method , demonstrating that the hybrid method achieves an improvement in average power output compared to the traditional Ant Colony Optimization (ACO) algorithm. This improvement is observed in both environments that are relatively easy to converge and those that are difficult to converge, with an increase ranging from approximately 0.4% to 9%. These results further validate that the hybrid method offers superior stability and efficiency compared to the traditional ACO algorithm.

致謝 I
摘要 II
Abstract III
目次 IV
圖次 VI
表次 VIII
第一章 前言 1
1.1 研究背景 1
1.2研究動機 2
1.3論文貢獻 5
1.4論文架構 5
第二章 文獻探討 6
2.1 最大功率點追蹤(MPPT) 6
2.2 擾動觀察法(P&O) 8
2.3 蟻群演算法(ACO) 15
2.3.1 蟻群演算法(ACO)的起源和沿革 15
2.3.2 蟻群演算法(ACO)的具體運行步驟 16
2.3.3 蟻群演算法(ACO)的參數意義與作用 17
2.3.4 蟻群演算法(ACO)的發展與應用 18
第三章 模擬架構與原理 19
3.1 Simulink介紹 19
3.1.1 Simulink主要功能與特點 19
3.1.2 Simulink模塊介紹 20
3.2太陽能光電(PV)模組 22
3.3 擾動觀察法(P&O)模組 26
3.4 蟻群演算法(ACO) 31
3.5 條件說明 32
第四章 模擬結果與分析 35
4.1 PV模組模擬結果 35
4.2 擾動觀察法(P&O)尋找最大功率點之模擬結果 38
4.3 蟻群演算法(ACO)尋找最大功率點(MPP)之模擬結果 40
4.3.1 輻照度1000W/m2的情況 40
4.3.2 輻照度800W/m2的環境 43
4.3.3 輻照度600W/m2的情況 45
4.4 混合方法(ACO+P&O)尋找最大功率點(MPP)之模擬結果 47
4.4.1 輻照度1000W/m2的情況 47
4.4.2 輻照度800W/m2的情況 50
4.4.3 輻照度600W/m2的情況 53
4.5 三種方法的分析與探討 56
4.5.1 螞蟻數量為20隻的情況 56
4.5.2 螞蟻數量為15隻的情況 59
4.5.3 螞蟻數量為10隻的情況 61
4.6 兩種方法的模擬結果比較 63
4.6.1 1000輻照度的條件下 63
4.6.2 800輻照度的條件下 64
4.6.3 600輻照度的條件下 65
4.7 三種方法的模擬結果比較 66
第五章 結論 68
5.1 結論 68
5.2 未來展望 69
參考文獻 70

[1]S. LaRose, "International Energy Outlook 2021 (IEO2021)," Washington, DC, 2021.
[2] I. Mead, "International energy outlook 2017," U.S. Energy Information Administration, 2017.
[3]M. A. Sattar, M. Sameeroddin, M. K. G. Deshmukh, and M. A.Sami,“Renewable energy and its industrial applications,” Int. Res. J. Eng. Technol. (IRJET), vol. 7, no. 6, pp. 6042-6046, 2020.
[4] V. Sebestyén, "Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, vol. 151, 2021, Art. no. 111626. doi: 10.1016/j.rser.2021.111626.
[5]M. Shahabuddin, M. A. Alim, T. Alam, M. Mofijur, S. F. Ahmed, and G. Perkins,
"A critical review on the developmentand challenges of concentrated solar power technologies," Sustainable Energy Technologies and Assessments, vol. 47,p.101434, 2021.
[6]M. Sarvi and A. Azadian, "A comprehensive review and classified comparison of MPPT algorithms in PVsystems,“Energy Syst.,vol.13,pp.281320,2022.https://doi.
org/10.1007/s12667-021-00427-x
[7]A. S. Al-Ezzi and M. N. M. Ansari, "Photovoltaic Solar Cells: A Review," Applied System Innovation, vol. 5, no. 4,p. 67, 2022.https://doi.org/10.3390/asi5040067
[8]S. Bhattacharyya, D. S. Kumar P, S. Samanta and S. Mishra, "Steady Output and Fast Tracking MPPT (SOFT-MPPT) for P&O and InC Algorithms," IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 293-302, Jan. 2021,
doi: 10.1109/TSTE.2020.2991768.
[9]Z. Liu, Y. -P. Hsu and M. M. Hella, "A Thermal/RF Hybrid Energy Harvesting
System With Rectifying-Combination and Improved Fractional-OCV MPPT
Method," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3352-3363, Oct. 2020, doi: 10.1109/TCSI.2020.2982403.
[10]A. Vijayakumari, "A non-iterative MPPT of PV array with online measured short
circuit and open circuit quantities," Journal of King Saud University -Engineering Sciences, vol. 33, no. 3, pp. 176-185, 2021. doi: 10.1016/j.jksues.2020.04.007.
[11]K. Xia, Y. Li and B. Zhu, "Improved Photovoltaic MPPT Algorithm Based on Ant Colony Optimization and Fuzzy Logic Under Conditions of Partial Shading,“ IEEE Access, vol. 12, pp. 44817-44825, 2024, doi:10.1109/ACCESS.2024.3381345.
[12]R. K. Phanden, L. Sharma, J. Chhabra, and H. İ. Demir, "A novel modified ant colony optimization based maximum power point tracking controller for photovoltaic systems," Materials Today: Proceedings, vol. 38, no. 1, pp. 89-93, 2021, doi: 10.1016/j.matpr.2020.06.020.
[13]H. Hasan, H. Suyono, and A. Lomi, "Optimizing Maximum Power Point Tracking on Photovoltaic Arrays using Ant Colony Optimization and Particle Swarm Optimization Algorithms," J. Sci. Appl. Eng., vol. 5, no. 1, p. 7, 2022.
[14]K.-H. Chao and M. N. Rizal, "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions,“ Energies, vol. 14, no. 10, p. 2902, 2021.https://doi.org/10.3390/en14102902
[15]N. Karami, N. Moubayed, and R. Outbib, “General review and classification of different MPPT Techniques," Renewable and Sustainable Energy Reviews, vol. 68, pt. 1, pp. 1-18, 2017. https://doi.org/10.1016/j.rser.2016.09.132.
[16]S. Motahhir, A. El Hammoumi, and A. El Ghzizal, "The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm," Journal of Cleaner Production, vol. 246, p. 118983, 2020. https://doi.org/10.1016/j.jclepro.2019.118983.
[17]R. Kahani, M. Jamil and M. T. Iqbal, "An Improved Perturb and Observed Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems," Journal of Modern Power Systems and Clean Energy, vol. 11, no. 4, pp. 1165-1175, July 2023, doi: 10.35833/MPCE.2022.000245.
[18]E. E. A.-R. Y. Essam E. M. Mohamed, "Hybrid and Adaptive P&O Maximum Power Point Tracking Techniques for PVGeneration Systems," TURCOMAT, vol. 12, no. 6, pp. 1694-1707, Apr. 2021.
[19]A. N. Mahmod Mohammad, M. A. Mohd Radzi, N. Azis, S. Shafie, and M. A. Atiqi Mohd Zainuri, "An enhanced adaptive perturb and observe technique for efficient maximum power point tracking under partial shading conditions," Applied Sciences, vol. 10, no. 10, p. 3912, 2020. doi: 10.3390/app10113912.
[20]C. Yanarates, Y. Wang and Z. Zhou, "Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller-Based Variable Perturbation Size Real-Time Adaptive Perturb and Observe (P&O) MPPT Algorithm for PV Systems,"IEEE Access, vol. 9, pp. 138468-138482, 2021, doi:10.1109/ACCESS.2021.3119042.
[21]M. Gunasekaran, V. Krishnasamy, S. Selvam, D. J. Almakhles and N.Anglani,
"An Adaptive Resistance Perturbation Based MPPT Algorithm for Photovoltaic Applications," IEEE Access, vol. 8, pp. 196890-196901, 2020,doi: 10.1109/ACCESS.2020.3034283.
[22]O. A. Ba, A. Ndiaye, A. Ba, E. H. M. Ndiaye and M. A. Tankari, "Optimization of the P&O-MPPT controller by the adaptivemethod (Ad-P&O) for stand-alone PV systems," in: 2023 11th International Conference on Smart Grid (icSmartGrid) , Paris,France, 2023, pp. 1-8, doi: 10.1109/icSmartGrid58556.2023.10171074.
[23]M. Dorigo and L. M. Gambardella, "Ant colonies for the travelling salesman problem," Biosystems, vol. 43, no. 2, pp. 73-81,1997.ISSN: 0303-2647.doi: 10.1016/S0303-2647(97)01708-5.https://www.sciencedirect.com/science/article/
pii/S0303264797017085
[24]B. van Veen, M. Emmerich, Z. Yang, T. Bäck, and J. Kok, "Ant Colony Algorithms for the Dynamic Vehicle Routing Problem with Time Windows," in Natural and Artificial Computation in Engineering and Medical Applications: 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2013, Mallorca, Spain, June 10-14, 2013.Proceedings, Part II*, vol. 7931, J.M. Ferrández Vicente, J.R. Álvarez Sánchez, F. de la Paz López, and F.J. Toledo Moreo, Eds.,Springer, Berlin, Heidelberg, 2013, pp. 1-10. doi: 10.1007/978-3-642-38622-0_1.
[25]M. López-Ibáñez and T. Stützle, "An experimental analysis of design choices of multi-objective ant colony optimizationalgorithms," Swarm Intell, vol. 6, pp. 207–232, 2012. https://doi.org/10.1007/s11721-012-0070-7
[26]J.G. Falcón-Cardona and C.A. Coello Coello, "A new indicator-based many-objective ant colony optimizer for continuoussearch spaces," Swarm Intell, vol. 11, pp. 71–100, 2017. https://doi.org/10.1007/s11721-017-0133-x
[27]T. Liao, M. A. Montes de Oca, D. Aydin, T. Stützle, and M. Dorigo, "An incremental ant colony algorithm with local search for continuous optimization," in Proceedings of the 13th annual conference on Genetic and evolutionary computation (GECCO '11), New York, NY, USA, 2011, pp. 125–132. https://doi.org/10.1145/2001576.2001594
[28]T. Liao, T. Stützle, M. A. Montes de Oca, and M. Dorigo, "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, vol. 234, no. 3, pp. 597-609, 2014, doi: 10.1016/j.ejor.2013.10.024.
[29]U. Kumar, Jayadeva, and S. Soman, "Enhancing IACOR Local Search by Mtsls1-BFGS for Continuous Global Optimization," in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO '15), New York,
NY, USA, 2015, pp. 33–40. https://doi.org/10.1145/2739480.2754689
[30]U. Kumar, S. Soman, and Jayadeva, "Benchmarking NLopt and state-of-the-art algorithms for continuous global optimization via IACOR," Swarm and Evolutionary Computation, vol. 27, pp. 116-131, 2016, doi:10.1016/j.swevo.2015.10.005.
[31]Q. Yang et al., "Adaptive Multimodal Continuous Ant Colony Optimization," IEEE Transactions on Evolutionary Computation, vol. 21, no. 2, pp. 191-205, April 2017, doi: 10.1109/TEVC.2016.2591064.
[32]K. Y. Wong and Komarudin, "Parameter tuning for ant colony optimization: A review," in 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, pp. 542-545, doi: 10.1109/ICCCE.2008.4580662.
[33]S. Ebadinezhad, "DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem," Engineering Applications of Artificial Intelligence, vol. 92, p. 103649, 2020. ISSN: 0952-1976.
doi: 10.1016/j.engappai.2020.103649.
[34]J. Yu, R. Li, Z. Feng, A. Zhao, Z. Yu, Z. Ye, and J. Wang, "A novel parallel ant colony optimization algorithm for warehouse path planning," Journal of Control Science and Engineering, vol. 2020, no. 1, pp. 5287189, 2020.
[35]P. Tomanová and V. Holý, "Ant colony optimization for time-dependent travelling salesman problem," in Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, pp. 47-51, March 2020.
[36]W. Li, L. Xia, Y. Huang, et al., "An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems," J. Ambient Intell. Human Comput., vol. 13, pp. 1557–1571,2022. https://doi.org/10.1007/s12652-021-031-20-0
[37]M. H. Mousa and M. K. Hussein, "Efficient UAV-based mobile edge computing using differential evolution and ant colony optimization," PeerJ Computer Science, vol. 8, p. e870, 2022. doi: 10.7717/peerj-cs.870.
[38]P. T. szemes and M. Melhem, "Analyzing and modeling PV with “P&O” MPPT Algorithm by MATLAB/SIMULINK," in 2020 3rd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS), Gjovik, Norway, 2020,pp. 1-6,doi: 10.1109/SIMS49386.2020.9121579.
[39]Dong Wei, Miaoyu Wei, Hui Cai, Xin Zhang, and Lihong Chen, "Parameters extraction method of PV model based on key points of I-V curve," Energy Conversion and Management, vol. 209, 2020, Art. no. 112656, ISSN 0196-8904.doi: 10.1016/j.enconman.2020.112656.
[40]Dhieb, M. Yaich, M. Bouzguenda and M. Ghariani, "MPPT Optimization using Ant Colony Algorithm: Solar PV applications," in 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse,Tunisia, 2022, pp. 503-507, doi:10.1109/STA56120.2022.10019072.

 
推荐文章