As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
. 2021 Jul 20;41(7):980–987. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2021.07.03
  • Search in PMC
  • Search in PubMed
  • View in NLM Catalog
  • Add to search
    • 抑制线粒体活性氧自由基可减轻高糖诱导的心肌细胞焦亡和铁死亡

      Inhibition of mitochondrial reactive oxygen species reduces high glucose-induced pyroptosis and ferroptosis in H9C2 cardiac myocytes

      1 蚌埠医学院生理学教研室,安徽 蚌埠 233000, Department of Physiology, Bengbu Medical College, Bengbu 233000, China
      2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China
      Find articles by 王 佳慧 1, 2 , 梁 欢 2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China
      Find articles by 梁 欢 1, 2 , 方 典 2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China
      Find articles by 方 典 1, 2 , 黄 毓慧 2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China
      Find articles by 黄 毓慧 1, 2 , 苗 雅琼 2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China
      Find articles by 苗 雅琼 1, 2 , 于 影 2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China
      Find articles by 于 影 1, 2 , 高 琴 2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China
      Find articles by 高 琴 1, 2, *
    • 1 蚌埠医学院生理学教研室,安徽 蚌埠 233000, Department of Physiology, Bengbu Medical College, Bengbu 233000, China
      2 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000, Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu 233000, China *

      高琴,博士,教授,E-mail: [email protected]

      PMCID: PMC8329685  PMID: 34308846

      Abstract

      探讨抑制线粒体氧化应激和炎症小体减轻高糖诱导的H9C2心肌细胞焦亡和铁死亡的作用,分析线粒体活性氧自由基(ROS)和炎症小体之间可能的上下游关系。

      方法

      将H9C2心肌细胞按照随机数字表法随机分为5组。正常对照组(CON):含25 mmol/L浓度葡萄糖的DMEM完全培养基;高糖损伤组(HG):含35 mmol/L浓度的高糖完全培养基;高糖+线粒体抗氧化剂Mitoquinone(MitoQ)组(HG+MitoQ):35 mmol/L高糖完全培养基中加入终浓度为0.5 μmol/mL的MitoQ;高糖+ NLRP3抑制剂MCC950组(HG+MCC950):35 mmol/L高糖完全培养基中加入终浓度为1 μmol/mL的MCC950;高糖组+MCC950+线粒体电子传递抑制剂Rotenone(ROT)组(HG+MCC950+ROT):35 mmol/L高糖完全培养基中加入终浓度为1 μmol/mL的MCC950和0.5 μmol/mL的ROT。各组心肌细胞干预24 h后,CCK-8法测定细胞活性;CellRox和MitoSox荧光探针分别测定心肌细胞内和线粒体氧化应激水平变化;免疫荧光法检测细胞内NLRP3炎症小体水平;Western blot检测心肌细胞中NLRP3、GSDMD和CleavedGSDMD(GSDMD-NT)等焦亡相关重要因子的蛋白表达和铁死亡相关因子GPX4蛋白表达。

      结果

      与CON组相比,HG组细胞活性明显下降( P < 0.01),心肌细胞和线粒体内ROS荧光强度( P < 0.01)、NLRP3免疫荧光强度( P < 0.01)以及焦亡相关因子NLRP3,GSDMD和GSDMD-NT的蛋白表达( P < 0.01)均明显升高,铁死亡相关因子GPX4蛋白表达下降( P < 0.01)。与HG组相比,HG+ MitoQ和HG+MCC950组细胞活性明显升高( P < 0.01),细胞和线粒体内ROS荧光强度( P < 0.01)、NLRP3免疫荧光强度( P < 0.01)以及NLRP3、GSDMD和GSDMD-NT的蛋白表达明显降低( P < 0.05),GPX4蛋白表达增高( P < 0.01)。与HG组相比,HG+ MCC950+ROT组细胞活性和NLRP3、GSDMD-NT的蛋白表达无明显差异( P >0.05);但与HG+MCC950组相比,HG+MCC950+ ROT组细胞活性明显降低( P < 0.01),ROS荧光强度、NLRP3炎症小体免疫荧光以及NLRP3、GSDMD-NT的蛋白表达均明显升高,GPX4蛋白表达降低( P < 0.05)。

      结论

      MitoQ直接抑制线粒体ROS的产生减轻了高糖诱导的心肌细胞NLRP3炎症小体的生成,减少焦亡和铁死亡的发生;抑制NLRP3炎症小体减少线粒体ROS的产生;线粒体ROS和NLRP3之间可能存在着相互影响。

      Keywords: 高糖, 线粒体氧自由基, NLRP3炎症小体, 细胞焦亡, 铁死亡


      糖尿病心肌病(DCM)是糖尿病的主要并发症之一,其主要特征是心脏结构和功能受损,可能导致心力衰竭,细胞死亡被认为是DCM期间心肌细胞的终末途径。线粒体来源的活性氧自由基(ROS)在调节细胞生理功能中发挥重要作用,但在糖尿病状态下,高血糖、胰岛素抵抗、游离脂肪酸水平升高等代谢改变导致细胞内线粒体ROS累积,细胞线粒体功能障碍,炎症反应增多,糖基化终末产物形成,引起成纤维细胞的纤维化 [ 1 ] 或心肌细胞焦亡、铁死亡等,最终导致心脏功能障碍,参与DCM的发病机制 [ 2 , 3 ] 。Nod样受体蛋白3(NLRP3)炎症小体是机体固有免疫防御系统的重要组成部分,可以通过产生炎症因子引起炎症反应,与许多炎症性疾病密切相关 [ 4 ] ,其在DCM等心血管疾病中也发挥重要作用 [ 5 , 6 ] 。NLRP3可被线粒体ROS激活,形成NLRP3-ASC-pro-caspase-1炎症小体复合物,活化的caspase-1切割焦亡效应物Gasdermin D(GSDMD)蛋白,诱导细胞焦亡发生 [ 7 ] ,因此抑制线粒体ROS和NLRP3炎症小体生成,减少心肌细胞焦亡,可能对DCM心肌损伤具有重要的保护意义。铁死亡是另一种与氧化应激密切相关并以ROS的产生和脂质过氧化为特征的程序性细胞死亡方式。线粒体通过调控铁、氧化应激、脂质和能量代谢等过程参与调控铁死亡的发生 [ 8 ] ,铁死亡抑制剂减轻棕榈酸诱导的H9C2心肌细胞和原代新生大鼠心肌细胞损伤 [ 9 ] ,抑制铁死亡可能是减轻心肌细胞损伤的重要靶点。

      高糖诱导的氧化应激直接参与细胞焦亡、铁死亡等,针对线粒体的抗氧化干预成为减轻糖尿病心肌死亡的重要环节之一。但线粒体内膜高度不透水,并具有很强的负电位,传统抗氧化剂由于对线粒体内部的低渗透性,其对抗线粒体氧化应激的效果不理想。米托醌(MitoQ)是一种泛醌与亲脂性阳离子三苯基磷(TPP)共价结合后的衍生物,特异性靶向线粒体对抗氧化反应 [ 10 ] 。MitoQ因具备特异性、脂溶性、渗透性强等优点,阻断线粒体活性氧的生成和防止线粒体氧化损伤作用远远强于其他抗氧化剂。有文献报道,MitoQ可以通过减少过氧化氢形成,改善线粒体的呼吸和通透性转化孔功能,抑制TGF-β1-NOX4-ROS信号转导通路等改善压力超负荷所致的心力衰竭和心脏纤维化 [ 11 , 12 ] ;通过促进线粒体吞噬和抗氧化酶的表达降低氧化应激水平、抑制凋亡,减少肝脏炎症和纤维化 [ 13 ] 。以上报道提示,MitoQ作为衍生的线粒体抗氧化剂对线粒体功能损伤相关疾病,具有保护作用。线粒体来源的ROS是激活NLRP3炎症小体和铁死亡通路的重要介质,虽然MitoQ可改善线粒体功能,但其是否抑制NLRP3炎症小体的表达?在焦亡和铁死亡中作用如何,目前尚未见报道。故我们提出假设,MitoQ是否可以通过减少线粒体ROS释放从而抑制NLRP3,减轻焦亡及铁死亡的发生。

      MCC950特异性靶向NLRP3,阻断炎症小体复合物的组装 [ 14 ] ,抑制细胞焦亡,参与多种心血管疾病的保护作用 [ 15 , 16 ] ,我们拟进一步观察其是否调控铁死亡的发生。

      ROS增多通过激活炎症小体的生成引起细胞损伤,提示ROS位于炎症小体的上游,但MCC950阻断炎症小体后,对线粒体ROS是否有影响?阻断炎症小体同时再激活线粒体ROS生成是否会继续发挥损伤作用?鱼藤酮(ROT)是线粒体复合体I电子传输链的抑制剂,可使线粒体膜电位降低,促进线粒体ROS产生增加,发挥神经毒性作用,在帕金森等神经性疾病中研究广泛 [ 17 , 18 ] ,ROT作为线粒体ROS激动剂亦诱导心血管损伤 [ 19 , 20 ] 。采用ROT促进线粒体ROS生成是否可以取消或减弱抑制NLRP3炎症小体从而抑制焦亡的作用?是否影响铁死亡的发生?这激发了我们的研究兴趣。

      故本研究分别采用MitoQ和MCC950抑制线粒体ROS和NLRP3炎症小体的产生,观察两者对高糖诱导的心肌细胞焦亡和铁死亡的作用,并在MCC950阻断NLRP3炎症小体的基础上采用ROT促进线粒体ROS产生,深入探究线粒体ROS和NLRP3炎症小体之间的关系,为临床通过抑制氧化应激、减轻线粒体损伤、减少细胞死亡从而预防和治疗糖尿病心肌损伤等提供新思路。

      1. 材料和方法

      1.1. 材料

      H9C2大鼠胚胎心肌细胞系(中国复百澳生物公司);高糖DMEM和胎牛血清(Hyclone);MCC950(sigma);MitoQ(MedChemExpress);Rotenone(APExBIO);CCK-8试剂盒(Biosharp);CellRox、MitoSox(Thermo Fisher);兔抗大鼠NLRP3、兔抗大鼠GSDMD和GSDMD-NT(Cell Signaling Technology);兔抗大鼠GPX4(Abcam);兔抗大鼠GAPDH抗体(Absin);辣根过氧化物酶标记的羊抗兔二抗(Biosharp);免疫荧光兔抗大鼠NLRP3购于(Novus);DAPI(碧云天)。

      1.2. 方法

      1.2.1. 细胞培养及实验分组

      大鼠H9C2心肌细胞用含10%胎牛血清的4500 g/L的DMEM培养基接种于无菌培养瓶中于37 ℃、5% CO 2 条件下培养。取生长良好且处于对数生长期的细胞用于实验。用35 mmol/L浓度的高糖干预H9C2心肌细胞24 h建立高糖损伤模型。

      实验分组:MitoQ和ROT均设置0.1、0.5、1 μmol/mL的浓度梯度,筛选并确定最适药物浓度后,按照随机数字表法将H9C2心肌细胞分为5组。①正常对照组(CON):H9C2心肌细胞培养于含25 mmol/L浓度葡萄糖的DMEM完全培养基;②高糖损伤组(HG):H9C2心肌细胞培养于含35 mmol/L的高糖培养基;③高糖+线粒体靶向抗氧化剂MitoQ组(HG+MitoQ):H9C2心肌细胞培养于含终浓度为0.5 μmol/mL的MitoQ的35 mmol/L高糖培养基中 [ 21 , 22 ] ;④高糖+NLRP3炎症小体抑制剂MCC950组(HG+MCC950):H9C2心肌细胞培养于含终浓度为1 μmol/mL的MCC950的35 mmol/L高糖培养基中 [ 15 , 23 ] ;⑤高糖组+MCC950+线粒体电子传递抑制剂Rotenone(ROT)(HG+MCC950+ ROT):心肌细胞培养于含终浓度为1 μmol/mL的MCC950和0.5 μmol/mL的ROT的35 mmol/L高糖培养基中 [ 24 , 26 ] 。各种药物干预心肌细胞24 h后进行相关指标检测。

      1.2.2. CCK-8法检测细胞活性

      将H9C2心肌细胞计数后以2×10 3 /孔接种于96孔板,细胞铺至60%~70%时给予无血清处理16~18 h,分组处理24 h后,每孔加入CCK-8培养液10 μL,并设置空白对照孔,37 ℃培养箱继续孵育2 h,酶标仪测定吸光度 A 450 nm 值。计算细胞活力%=(干预细胞 A 450 nm -空白 A 450 nm )/(对照细胞A450 nm-空白 A 450 nm )×100%。

      1.2.3. CellRox和MitoSox探针分别检测心肌细胞内和线粒体内ROS水平

      H9C2心肌细胞以5×10 4 /皿接种于共聚焦小皿,分组处理后按照使用说明每孔加入5 μmol/mL的CellRox或MitoSox探针,37 ℃避光孵育探针30 min或10 min,4%多聚甲醛37 ℃固定15 min,37 ℃避光孵育DAPI(1 μg/mL)15 min后加入防荧光淬灭剂。活细胞工作站或共聚焦显微镜下观察、拍照,Image J软件进行荧光平均强度分析。

      1.2.4. 免疫荧光法检测细胞内NLRP3水平

      H9C2心肌细胞计数,以2×10 4 /孔接种于12孔板,分组处理24 h后,4%多聚甲醛37 ℃固定30 min;0.5%Triton X-100 37 ℃渗透细胞30 min;5% BSA 37 ℃封闭30 min;BSA稀释兔抗大鼠NLRP3抗体(1∶10~1∶50)4 ℃孵育过夜;Cy3-山羊抗兔IgG(1∶400~1∶800)37 ℃孵育30 min;37 ℃避光孵育DAPI(1 μg/mL)15 min,加入防荧光淬灭剂。活细胞工作站观察、拍照,Image J软件进行平均荧光强度分析。

      1.2.5. Western blot检测心肌细胞内焦亡相关因子的蛋白表达

      分组干预24 h后,收集各组心肌细胞加入适量RIPA裂解液提取细胞总蛋白,BCA法测定各组细胞蛋白浓度,加入5×蛋白上样缓冲液后,定量30 μg上样电泳后将蛋白转至PVDF膜,5%脱脂牛奶封闭PVDF膜2 h,兔抗大鼠NLRP3(1∶600)、GSDMD(1∶2000)、GSDMD-NT(1∶2000)、GPX4(1∶3000)和GADPH(1∶3000)4 ℃孵育过夜、TBST洗膜3次,山羊抗兔二抗(1∶10 000)孵育1 h、TBST洗膜4次,ECL显影,凝胶成像系统曝光、显影。Image J软件分析各组蛋白表达水平。

      1.2.6. 统计方法

      采用SPSS 24.0统计软件,计量资料以均数±标准差表示,多组间比较采用单因素方差分析,并用Tukey检验进行组间比较。 P < 0.05时认为差异有统计学意义。

      2. 结果

      2.1. 细胞活性变化

      2.1.1. 药物浓度确定

      CCK-8结果显示,H9C2心肌细胞干预24 h后,与CON组相比,HG组细胞活性明显下降( P =0.003)。与HG组相比,MitoQ终浓度为0.1、0.5、1 μmol/mL的HG+MitoQ组活性均明显升高( P =0.002; P < 0.001; P =0.001),其中0.5 μmol/mL组活性最高( 图 1A )。与CON组相比,随着ROT浓度升高,细胞活性逐渐下降( P < 0.001);1 μmol/mL时细胞状态不佳,故选取0.5 μmol/mL的MitoQ和ROT进行实验( 图 1B )。

      各组H9C2心肌细胞活性

      Viability of H9C2 cardiac muscle cells treated with different concentrations of mitoquinone ( A ), rotenone (ROT; B ) or both ( C ). Data are presented as Mean ± SD ( n =5 or 4). ** P < 0.01, *** P < 0.001 vs CON; ## P < 0.01, ### P < 0.001 vs HG; && P < 0.01 vs HG+MCC950.

      2.1.2. 各组细胞活性变化

      CCK-8结果显示,与CON组相比,HG组细胞活性明显下降( P =0.005)。与HG组相比,HG+MitoQ和HG+MCC950组活性明显升高( P =0.008; P < 0.001)。HG+MCC50+ROT组细胞活性与HG组相比无明显变化( P =0.976),与HG+MCC950组相比明显降低( P =0.001, 图 1C )。

      2.2. 各组细胞和线粒体内ROS水平的变化

      图 2 所示,与CON组相比,HG组反映胞浆氧自由基变化的CellRox(绿色, 图 2A )和反映线粒体氧自由基变化的MitoSox(红色, 图 2B )平均荧光强度明显增强( P < 0.001)。与HG组相比,HG+MitoQ( P =0.004; P < 0.001)和HG+MCC950( P < 0.001)组荧光强度均明显下降;同时与HG+MCC950组相比,HG+MCC50+ROT组CellRox和MitoSox荧光强度也明显增强( P =0.008; P =0.016)。

      各组H9C2心肌细胞CellRox和MitoSox染色

      Fluorescence staining of H9C2 cells with CellRox and MitoSox. A , B : Images of CellRox (green; scale bar=100 μm) and MitoSox (red; scale bar=20 μm) and DAPI (blue) fluorescence staining. C , D : Quantitative analysis of fluorescence intensity of CellRox and MitoSox staining ( Mean ± SD , n =5). *** P < 0.001 vs CON; ## P < 0.01, ### P < 0.001 vs HG; & P < 0.05, && P < 0.01 vs HG+ MCC950.

      2.3. 各组心肌细胞NLRP3免疫荧光变化

      与CON组相比,HG组红色荧光强度明显增强( P < 0.001)。与HG组相比,HG+MitoQ、HG+MCC950组红色荧光强度明显下降( P < 0.001; P =0.003)。与HG+MCC950组相比,HG+MCC50+ROT组NLRP3荧光强度也明显增强( P =0.034, 图 3 )。

      各组H9C2心肌细胞NLRP3免疫荧光染色

      Immunofluorescence staining of NLRP3 in H9C2 cells. A : Images of NLRP3 (red) and DAPI (blue) immunofluorescence staining (× 200, scale bar=50 μm). B : Quantitative analysis of NLRP3 fluorescence intensity ( Mean ± SD , n =5). *** P < 0.001 vs CON; ## P < 0.01, ### P < 0.001 vs HG; & P < 0.05 vs HG+MCC950.

      2.4. 各组心肌细胞内NLRP3、GSDMD、GSDMD-NT和GPX4蛋白表达变化

      Western blot结果显示,与CON组相比,HG组NLRP3及焦亡相关因子GSDMD和GSDMD-NT蛋白表达均明显升高( P =0.010; P =0.003; P < 0.001),GPX4蛋白明显降低( P < 0.001)。与HG组相比,HG+MitoQ和HG + MCC950组NLRP3( P =0.020; P =0.018)、GSDMD( P =0.001; P =0.002)和GSDMD-NT( P < 0.001; P =0.001)蛋白表达均明显下降,GPX4蛋白表达明显上升( P =0.002; P =0.003)。与HG组相比,HG+MCC950+ ROT组NLRP3( P =0.873)和GSDMD-NT( P =0.202)蛋白表达无明显变化,GSDMD降低( P =0.001);与HG+ MCC950组相比,HG + MCC950 + ROT组NLRP3和GSDMD-NT蛋白表达明显上升( P =0.024; P =0.033),GPX4蛋白表达下降( P =0.032, 图 4 )。

      各组H9C2心肌细胞相关蛋白水平变化

      Changes of protein levels in each group. A , B : Western blots of NLRP3, GSDMD, GSDMD-NT, GPX4 and GAPDH in H9C2 cells. C - F : NLRP3, GSDMD, GSDMD-NT and GPX4 protein levels normalized by GAPDH levels ( Mean ± SD , n =5). * P < 0.05, ** P < 0.01, *** P < 0.001 vs CON; # P < 0.05, ## P < 0.01, ### P < 0.001 vs HG; & P < 0.05 vs HG+MCC950.

      3. 讨论

      DCM是引起糖尿病患者死亡的重要原因之一,除肥胖、胰岛素抵抗、心脏结构异常等危险因素外,线粒体功能和ROS的释放也与DCM的发生发展密切相关。高糖引起线粒体功能障碍,氧化磷酸化受损,膜电位改变,Ca 2+ 超负荷,ROS生成增多,产生炎症反应,导致细胞死亡。细胞焦亡和铁死亡是均可被ROS诱导的程序性细胞死亡方式。

      细胞焦亡是一类由Gasdermin介导、依赖于caspase活性的程序性细胞死亡方式。ROS可以激活焦亡经典通路中重要的炎症小体NLRP3,形成NLRP3-ASC-pro-caspase-1炎症小体复合物,参与DCM等多种心血管疾病的发生发展 [ 27 ] 。GSDMD蛋白作为焦亡的执行者 [ 28 ] ,在正常细胞中处于失活状态,受到刺激后被活化的caspase切割,释放的N端在细胞膜上寡聚形成GSDMD孔隙以释放小分子至细胞外,GSDMD的裂解,即Cleaved-GSDMD(GSDMD-NT)增强提示触发细胞焦亡效应增强。铁死亡由过量的铁积累通过Fenton反应引起多不饱和脂肪酸的过氧化,并在O 2 的作用下进一步催化脂质氧化,破坏细胞膜并产生有毒衍生物所致 [ 29 ] 。谷胱甘肽过氧化物酶4(GPX4)是清除脂质ROS所需的关键酶,在GSH的作用下可以中和被氧化的脂质,抑制GSH的合成和再循环或抑制GPX4会诱导铁死亡 [ 30 ] 。GPX4在心肌梗死或糖尿病心肌缺血/再灌注损伤的心肌细胞中下调 [ 31 , 32 ] 。通过测定NLRP3和GSDMD的表达反应细胞焦亡的发生,GPX4的下调标志着铁死亡的发生。

      糖尿病状态下,线粒体作为活性氧的主要来源,其产生的ROS是机体氧化应激反应的重要组成。线粒体靶向抗氧化剂MitoQ的亲脂阳离子具有脂溶性,因此可以很容易和迅速地通过磷脂双分子层进入线粒体,迅速而广泛地占据着线粒体,转化为具有抗氧化活性的泛醇发挥抗氧化作用。糖尿病状态下,线粒体抗氧化剂MitoQ可以减轻线粒体损伤和胰腺内质网、免疫细胞以及肝脏中的氧化应激水平 [ 22 , 33 , 34 ] ,在高糖环境下也能减轻脑微血管内皮细胞损伤 [ 35 ] 。在心血管疾病中,MitoQ可以改善压力超负荷引起的心脏纤维化和心功能不全 [ 12 ] ,发挥保护作用。但其在糖尿病或高糖环境下对心肌细胞焦亡的作用及是否调控铁死亡的发生报道缺乏明确结论。

      本课题前期研究观察到,运用35 mmol/L高糖干预心肌细胞24 h,可诱导H9C2心肌细胞发生焦亡 [ 36 ] 。本研究继续采用35 mmol/L高糖培养基干预H9C2心肌细胞复制糖尿病模型,探讨细胞焦亡和铁死亡及相关机制。结果显示,与正常对照组相比,高糖组心肌细胞发生损伤,氧化应激加重,并诱导细胞焦亡,具体表现为细胞活性下降,细胞内和线粒体内ROS水平增强、NLRP3免疫荧光水平、NLRP3、GSDMD和GSDMD-NT蛋白表达均明显增强,同时GPX4蛋白水平显著降低,提示高糖促进焦亡和铁死亡发生。

      在高糖干预的基础上给予线粒体靶向抗氧化剂0.5 μmol/mL MitoQ,与高糖组相比,细胞活性明显增强,细胞内和线粒体内ROS水平、NLRP3免疫荧光水平均下降,GSDMD蛋白的裂解也明显减弱,GPX4水平明显升高,提示直接抑制线粒体氧化应激可引起细胞胞浆和线粒体氧自由基的释放减少,减轻NLRP3炎症小体的生成,不仅抑制焦亡的发生,同时抑制铁死亡的发生。氧化应激能够诱导NLRP3炎症小体的生成,促进焦亡发生,那么改变炎症小体是否会调控氧化应激损伤?改变炎症小体是否调控铁死亡的发生?目前鲜有报道。Luo等 [ 37 ] 报道,NLRP3炎症小体的活化导致炎症因子分泌增多,促进线粒体ROS的生成增多,进一步诱导NLRP3的活化,提示线粒体ROS和NLRP3之间存在相互影响。现有报道尽管对于ROS激活炎症小体已较明确,但是对于炎症小体激活能否促进更多的ROS的释放尚不明了 [ 38 ]

      为了进一步观察高糖环境下NLRP3炎症小体、ROS的产生和释放的先后顺序,本研究采用NLRP3炎症小体特异性抑制剂1 μmol/mL MCC950进行药物干预,抑制NLRP3的表达。结果显示,与高糖组相比,HG+MCC950组心肌细胞活性增强,细胞内和线粒体内ROS水平均降低,提示NLRP3被抑制后,可通过反向调控胞浆及线粒体ROS的释放减轻对细胞的损伤;同时NLRP3免疫荧光和NLRP3、GSDMD-NT蛋白表达均降低,提示NLRP3被抑制后,一方面氧化应激水平降低,另一方面NLRP3的降低使得细胞在高糖环境下不易形成NLRP3炎症小体复合物,从而不易激活焦亡关键因子GSDMD的裂解,炎症因子释放减少,损伤减轻。同时观察到铁死亡相关蛋白GPX4蛋白水平明显升高,提示减轻了铁死亡的发生。结合上述结果,我们推测抑制NLRP3炎症小体的生成减轻高糖诱导的H9C2心肌细胞焦亡和炎症反应可能与其能够抑制胞质和线粒体氧化应激反应有关;同时抑制NLRP3炎症小体亦能抑制另一种与氧化应激密切相关的细胞死亡方式——铁死亡的发生,但NLRP3下调本身直接抑制铁死亡的发生,还是其通过减轻氧化应激和炎症反应抑制铁死亡的发生,具体机制还有待进一步探讨。

      为了进一步确定氧化应激和炎症小体之间相互调控的上下游反馈关系,本研究进一步在MCC950阻断NLRP3炎症小体作用的基础上采用ROT促进线粒体ROS产生。Bavkar等 [ 39 ] 报道ROT在高糖引起的心、肝、肺、肾多脏器损伤的基础上可继续促进氧化应激反应,加重损伤。本研究结果显示,与HG组相比,HG+ MCC950+ROT组心肌细胞活性、NLRP3和GSDMDNT蛋白表达无明显差别,仍然引起细胞损伤;与HG+ MCC950组相比,HG+MCC950+ROT组细胞和线粒体内ROS水平、NLRP3炎症小体和GSDMD-NT表达均升高,GPX4表达下降,提示ROT促进线粒体ROS释放后,取消了NLRP3抑制剂MCC950的保护作用,继续促进NLRP3炎症小体生成引起细胞焦亡和铁死亡,但MCC950抑制炎症小体的前提下,再次被激活的氧化应激损伤和炎症小体数量有限。

      以上结果提示线粒体ROS和NLRP3之间可能存在相互联系,高糖等损伤诱导线粒体ROS的增加促进NLRP3炎症小体的产生;NLRP3炎症小体亦可能反馈加重线粒体ROS的释放,阻断NLRP3炎症小体可以减少线粒体氧化应激反应;即使抑制了NLRP3炎症小体,额外增加线粒体ROS的释放亦能继续诱导NLRP3炎症小体生成,形成级联效应,共同促进焦亡和铁死亡的发生。

      综上所述,高糖引起H9C2心肌细胞胞浆和线粒体ROS释放增多,诱导NLRP3炎症小体并促进GSDMD裂解增强,GPX4蛋白表达下降,导致焦亡和铁死亡发生。减少线粒体ROS的释放、抑制NLRP3炎症小体均可对抗高糖诱导的心肌细胞焦亡和铁死亡发挥保护作用。线粒体ROS和NLRP3炎症小体之间可能存在相互调控的作用,其相关机制还有待进一步探讨。

      Biography

      王佳慧,在读硕士研究生,E-mail: [email protected]

      Funding Statement

      国家自然科学基金(81770297);蚌埠医学院“512人才培育计划”(by51201102);蚌埠医学院研究生科研创新计划项目(Byycx1901)

      Supported by National Natural Science Foundation of China (81770297)

      Contributor Information

      王 佳慧 (Jiahui WANG), Email: [email protected].

      高 琴 (Qin GAO), Email: [email protected].

      References

      1. Evangelista I, Nuti R, Picchioni T, et al. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int J Mol Sci. 2019;20(13):3264. doi: 10.3390/ijms20133264. [Evangelista I, Nuti R, Picchioni T, et al. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy[J]. Int J Mol Sci, 2019, 20(13): 3264.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 2. Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 2020;7:12. doi: 10.3389/fcvm.2020.00012. [Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy[J]. Front Cardiovasc Med, 2020, 7: 12.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 3. Chen Y, Hua Y, Li X, et al. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol. 2020;11:42. doi: 10.3389/fphar.2020.00042. [Chen Y, Hua Y, Li X, et al. Distinct types of cell death and the implication in diabetic cardiomyopathy[J]. Front Pharmacol, 2020, 11: 42.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 4. Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17(8):588–606. doi: 10.1038/nrd.2018.97. [Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(8): 588-606.] [ DOI ] [ PubMed ] [ Google Scholar ] 5. Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res. 2021 doi: 10.1093/cvr/cvab010. [Takahashi M. NLRP3 inflammasome as a key driver of vascular disease[J]. Cardiovasc Res, 2021. DOI: 10.1093/cvr/cvab010.] [ DOI ] [ PubMed ] [ Google Scholar ] 6. An N, Gao Y, Si Z, et al. Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases. Front Immunol. 2019;10:1592. doi: 10.3389/fimmu.2019.01592. [An N, Gao Y, Si Z, et al. Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases [J]. Front Immunol, 2019, 10: 1592.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 7. Yan Z, Qi Z, Yang X, et al. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol. 2021;236(8):5547–63. doi: 10.1002/jcp.30285. [Yan Z, Qi Z, Yang X, et al. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling[J]. J Cell Physiol, 2021, 236(8): 5547-63.] [ DOI ] [ PubMed ] [ Google Scholar ] 8. Wang H, Liu C, Zhao Y, et al. Mitochondria regulation in ferroptosis. Eur J Cell Biol. 2020;99(1):151058. doi: 10.1016/j.ejcb.2019.151058. [Wang H, Liu C, Zhao Y, et al. Mitochondria regulation in ferroptosis [J]. Eur J Cell Biol, 2020, 99(1): 151058.] [ DOI ] [ PubMed ] [ Google Scholar ] 9. Wang N, Ma H, Li J, et al. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J Mol Cell Cardiol. 2021;150:65–76. doi: 10.1016/j.yjmcc.2020.10.010. [Wang N, Ma H, Li J, et al. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes[J]. J Mol Cell Cardiol, 2021, 150: 65-76.] [ DOI ] [ PubMed ] [ Google Scholar ] 10. Battogtokh G, Choi YS, Kang DS, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B. 2018;8(6):862–80. doi: 10.1016/j.apsb.2018.05.006. [Battogtokh G, Choi YS, Kang DS, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives[J]. Acta Pharm Sin B, 2018, 8(6): 862-80.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 11. Ribeiro Junior RF, Dabkowski ER, Shekar KC, et al. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radic Biol Med. 2018;117:18–29. doi: 10.1016/j.freeradbiomed.2018.01.012. [Ribeiro Junior RF, Dabkowski ER, Shekar KC, et al. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload[J]. Free Radic Biol Med, 2018, 117: 18-29.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 12. Goh KY, He L, Song J, et al. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biol. 2019;21:101100. doi: 10.1016/j.redox.2019.101100. [Goh KY, He L, Song J, et al. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice[J]. Redox Biol, 2019, 21: 101100.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 13. Turkseven S, Bolognesi M, Brocca A, et al. Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats. Am J Physiol Gastrointest Liver Physiol. 2020;318(2):G298–304. doi: 10.1152/ajpgi.00135.2019. [Turkseven S, Bolognesi M, Brocca A, et al. Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(2): G298-304.] [ DOI ] [ PubMed ] [ Google Scholar ] 14. Wu D, Chen Y, Sun Y, et al. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review. Inflammation. 2020;43(1):17–23. doi: 10.1007/s10753-019-01098-8. [Wu D, Chen Y, Sun Y, et al. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review [J]. Inflammation, 2020, 43(1): 17-23.] [ DOI ] [ PubMed ] [ Google Scholar ] 15. Sharma A, Choi JSY, Stefanovic N, et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. http://www.researchgate.net/publication/347662131_Specific_NLRP3_Inhibition_Protects_Against_Diabetes-Associated_Atherosclerosis . Diabetes. 2020;70(3):772–87. doi: 10.2337/db20-0357. [Sharma A, Choi JSY, Stefanovic N, et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis[J]. Diabetes, 2020, 70(3): 772-87.] [ DOI ] [ PubMed ] [ Google Scholar ] 16. Gao RF, Li X, Xiang HY, et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. Int Immunopharmacol. 2021;90:107133. doi: 10.1016/j.intimp.2020.107133. [Gao RF, Li X, Xiang HY, et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice[J]. Int Immunopharmacol, 2021, 90: 107133.] [ DOI ] [ PubMed ] [ Google Scholar ] 17. Pokusa M, Hajdúchová D, Menichová V, et al. Vulnerability of subcellular structures to pathogenesis induced by rotenone in shsy5y cells. http://www.researchgate.net/publication/350153790_Vulnerability_of_subcellular_structures_to_pathogenesis_induced_by_rotenone_in_SH-SY5Y_cells . Physiol Res. 2021;70(1):89–99. doi: 10.33549/physiolres.934477. [Pokusa M, Hajdúchová D, Menichová V, et al. Vulnerability of subcellular structures to pathogenesis induced by rotenone in shsy5y cells [J]. Physiol Res, 2021, 70(1): 89-99.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 18. Simões RF, Ferrão R, Silva MR, et al. Refinement of a differentiation protocol using neuroblastoma SH-SY5Y cells for use in neurotoxicology research. Food Chem Toxicol. 2021;149:111967. doi: 10.1016/j.fct.2021.111967. [Simões RF, Ferrão R, Silva MR, et al. Refinement of a differentiation protocol using neuroblastoma SH-SY5Y cells for use in neurotoxicology research[J]. Food Chem Toxicol, 2021, 149: 111967.] [ DOI ] [ PubMed ] [ Google Scholar ] 19. Yuan Q, Yang F, Dai S, et al. Aldehyde dehydrogenase 2 protects against sympathetic excitation-induced cardiac fibrosis. Biochem Biophys Res Commun. 2020;533(4):1427–34. doi: 10.1016/j.bbrc.2020.09.098. [Yuan Q, Yang F, Dai S, et al. Aldehyde dehydrogenase 2 protects against sympathetic excitation-induced cardiac fibrosis[J]. Biochem Biophys Res Commun, 2020, 533(4): 1427-34.] [ DOI ] [ PubMed ] [ Google Scholar ] 20. Chapa-Dubocq XR, Rodríguez-Graciani KM, Guzmán-Hernández R A, et al. Cardiac function is not susceptible to moderate disassembly of mitochondrial respiratory supercomplexes. Int J Mol Sci. 2020;21(5):1555. doi: 10.3390/ijms21051555. [Chapa-Dubocq XR, Rodríguez-Graciani KM, Guzmán-Hernández R A, et al. Cardiac function is not susceptible to moderate disassembly of mitochondrial respiratory supercomplexes[J]. Int J Mol Sci, 2020, 21(5): 1555.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 21. Chen S, Wang Y, Zhang H, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells. Int J Biol Sci. 2019;15(7):1440–51. doi: 10.7150/ijbs.30193. [Chen S, Wang Y, Zhang H, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells [J]. Int J Biol Sci, 2019, 15(7): 1440-51.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 22. Escribano-Lopez I, Bañuls C, Diaz-Morales N, et al. The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic Reticulum stress in pancreatic β cells exposed to hyperglycaemia. Cell Physiol Biochem. 2019;52(2):186–97. doi: 10.33594/000000013. [Escribano-Lopez I, Bañuls C, Diaz-Morales N, et al. The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic Reticulum stress in pancreatic β cells exposed to hyperglycaemia[J]. Cell Physiol Biochem, 2019, 52(2): 186-97.] [ DOI ] [ PubMed ] [ Google Scholar ] 23. Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556–9. doi: 10.1038/s41589-019-0277-7. [Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J]. Nat Chem Biol, 2019, 15(6): 556-9.] [ DOI ] [ PubMed ] [ Google Scholar ] 24. Zhou H, Cheang T, Su F, et al. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of dynamin-related protein 1 expression. Eur J Pharmacol. 2018;819:58–67. doi: 10.1016/j.ejphar.2017.11.040. [Zhou H, Cheang T, Su F, et al. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of dynamin-related protein 1 expression[J]. Eur J Pharmacol, 2018, 819: 58-67.] [ DOI ] [ PubMed ] [ Google Scholar ] 25. Niu YJ, Zhou W, Nie ZW, et al. Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos. http://onlinelibrary.wiley.com/doi/pdf/10.1111/jpi.12627 . J Pineal Res. 2020;68(2):e12627. doi: 10.1111/jpi.12627. [Niu YJ, Zhou W, Nie ZW, et al. Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos[J]. J Pineal Res, 2020, 68(2): e12627.] [ DOI ] [ PubMed ] [ Google Scholar ] 26. Zhang X, Du L, Zhang W, et al. Therapeutic effects of baicalein on rotenone-induced Parkinson's disease through protecting mitochondrial function and biogenesis. Sci Rep. 2017;7(1):9968. doi: 10.1038/s41598-017-07442-y. [Zhang X, Du L, Zhang W, et al. Therapeutic effects of baicalein on rotenone-induced Parkinson's disease through protecting mitochondrial function and biogenesis [J]. Sci Rep, 2017, 7(1): 9968.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 27. Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol. 2019;67:311–8. doi: 10.1016/j.intimp.2018.12.028. [Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases [J]. Int Immunopharmacol, 2019, 67: 311-8.] [ DOI ] [ PubMed ] [ Google Scholar ] 28. He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285–98. doi: 10.1038/cr.2015.139. [He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015, 25(12): 1285-98.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 29. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85. doi: 10.1016/j.cell.2017.09.021. [Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-85.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 30. Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172(3):409–22. doi: 10.1016/j.cell.2017.11.048. [Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-22. e21.] [ DOI ] [ PubMed ] [ Google Scholar ] 31. Park TJ, Park JH, Lee GS, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis. 2019;10(11):835. doi: 10.1038/s41419-019-2061-8. [Park TJ, Park JH, Lee GS, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes[J]. Cell Death Dis, 2019, 10(11): 835.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 32. Li WY, Li W, Leng Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic Reticulum stress. http://www.researchgate.net/publication/337808563_Ferroptosis_Is_Involved_in_Diabetes_Myocardial_IschemiaReperfusion_Injury_Through_Endoplasmic_Reticulum_Stress . DNACell Biol. 2020;39(2):210–25. doi: 10.1089/dna.2019.5097. [Li WY, Li W, Leng Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic Reticulum stress [J]. DNACell Biol, 2020, 39(2): 210-25.] [ DOI ] [ PubMed ] [ Google Scholar ] 33. Escribano-Lopez I, Diaz-Morales N, Rovira-Llopis S, et al. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol. 2016;10:200–5. doi: 10.1016/j.redox.2016.10.017. [Escribano-Lopez I, Diaz-Morales N, Rovira-Llopis S, et al. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients[J]. Redox Biol, 2016, 10: 200-5.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 34. Fink BD, Yu L, Coppey L, et al. Effect of mitoquinone on liver metabolism and steatosis in obese and diabetic rats. http://onlinelibrary.wiley.com/doi/10.1002/prp2.701 . Pharmacol Res Perspect. 2021;9(1):e00701. doi: 10.1002/prp2.701. [Fink BD, Yu L, Coppey L, et al. Effect of mitoquinone on liver metabolism and steatosis in obese and diabetic rats[J]. Pharmacol Res Perspect, 2021, 9(1): e00701.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 35. Yang MY, Fan Z, Zhang Z, et al. MitoQ protects against high glucoseinduced brain microvascular endothelial cells injury via the Nrf2/ HO-1 pathway. J Pharmacol Sci. 2021;145(1):105–14. doi: 10.1016/j.jphs.2020.10.007. [Yang MY, Fan Z, Zhang Z, et al. MitoQ protects against high glucoseinduced brain microvascular endothelial cells injury via the Nrf2/ HO-1 pathway[J]. J Pharmacol Sci, 2021, 145(1): 105-14.] [ DOI ] [ PubMed ] [ Google Scholar ] 36. Cao RP, Fang D, Wang JH, et al. ALDH2 overexpression alleviates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation. http://www.ncbi.nlm.nih.gov/pubmed/31871948 . J Diabetes Res. 2019;2019:4857921. doi: 10.1155/2019/4857921. [Cao RP, Fang D, Wang JH, et al. ALDH2 overexpression alleviates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation[J]. J Diabetes Res, 2019, 2019: 4857921.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 37. Luo B, Huang F, Liu Y, et al. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy. Front Physiol. 2017;8:519. doi: 10.3389/fphys.2017.00519. [Luo B, Huang F, Liu Y, et al. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy[J]. Front Physiol, 2017, 8: 519.] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 38. 吴 晓升, 项 静, 刘 靖华. 线粒体在NLRP3炎性小体激活过程中的双向调节作用. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY201804013.htm . 现代免疫学. 2018;38(4):333–6. [吴晓升, 项静, 刘靖华. 线粒体在NLRP3炎性小体激活过程中的双向调节作用[J]. 现代免疫学, 2018, 38(4): 333-6.] [ Google Scholar ] 39. Bavkar LN, Patil RS, Rooge SB, et al. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor. Mol Cell Biochem. 2019;459(1/2):61–71. doi: 10.1007/s11010-019-03550-7?utm_content=null. [Bavkar LN, Patil RS, Rooge SB, et al. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor[J]. Mol Cell Biochem, 2019, 459(1/2): 61-71.] [ DOI ] [ PubMed ] [ Google Scholar ]

      Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University