As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more:
PMC Disclaimer
与CON组相比,HG组细胞活性明显下降(
P
< 0.01),心肌细胞和线粒体内ROS荧光强度(
P
< 0.01)、NLRP3免疫荧光强度(
P
< 0.01)以及焦亡相关因子NLRP3,GSDMD和GSDMD-NT的蛋白表达(
P
< 0.01)均明显升高,铁死亡相关因子GPX4蛋白表达下降(
P
< 0.01)。与HG组相比,HG+ MitoQ和HG+MCC950组细胞活性明显升高(
P
< 0.01),细胞和线粒体内ROS荧光强度(
P
< 0.01)、NLRP3免疫荧光强度(
P
< 0.01)以及NLRP3、GSDMD和GSDMD-NT的蛋白表达明显降低(
P
< 0.05),GPX4蛋白表达增高(
P
< 0.01)。与HG组相比,HG+ MCC950+ROT组细胞活性和NLRP3、GSDMD-NT的蛋白表达无明显差异(
P
>0.05);但与HG+MCC950组相比,HG+MCC950+ ROT组细胞活性明显降低(
P
< 0.01),ROS荧光强度、NLRP3炎症小体免疫荧光以及NLRP3、GSDMD-NT的蛋白表达均明显升高,GPX4蛋白表达降低(
P
< 0.05)。
To observe the effect of inhibiting mitochondrial oxidative stress and NLRP3 inflammasomes on high glucose (HG)-induced pyroptosis and ferroptosis in H9C2 cardiac muscle cells and explore the possible interactions between mitochondrial reactive oxygen species (ROS) and inflammasomes.
Methods
H9C2 cells exposed to high glucose (35 mmol/L) were treated with the mitochondrial antioxidant mitoquinone (MitoQ), the NLRP3 antagonist MCC950, or both MCC950 and rotenone (a mitochondrial electron transport antagonist), and the cell viability was measured with CCK-8 assay. The cellular and mitochondrial ROS levels were measured using CellRox and Mitosox fluorescent probes, respectively. The cellular NLRP3 inflammasome level was detected with immunofluorescence assay, and the expressions of the key proteins related with pyroptosis and ferroptosis were determined with Western blotting.
Results
HG exposure significantly lowered the viability of H9C2 cells (
P
< 0.01), reduced the expression of GPX4 protein (a key protein related with ferroptosis) (
P
< 0.01), and increased the fluorescence intensities of NLRP3 (
P
< 0.01) and ROS (at both the cellular and mitochondrial levels,
P
< 0.01) and the protein expressions of NLRP3 and GSDMD-NT (
P
< 0.01). Treatment with either MitoQ or MCC950 significantly increased the viability of HG-exposed cells (
P
< 0.01), increased GPX4 expression (
P
< 0.01), and reduced the fluorescence intensities of NLRP3 (
P
< 0.01) and cellular and mitochondrial ROS (
P
< 0.01) and the protein expressions of NLRP3 and GSDMD-NT (
P
< 0.05). Compared with MCC950 treatment, treatment with both MCC950 and rotenone significantly reduced the viability of HG-exposed cells (
P
< 0.01), lowered GPX4 expression (
P
< 0.01), and increased the fluorescence intensities of ROS and NLRP3 (
P
< 0.01) and the protein levels of NLRP3 and GSDMD-NT (
P
< 0.05).
Conclusion
MitoQ inhibits mitochondrial ROS production to reduce HGinduced NLRP3 inflammasome activation and thus suppress pyroptosis and ferroptosis of cardiac muscle cells. There may be an interaction between mitochondrial ROS and NLRP3 inflammasomes.
采用SPSS 24.0统计软件,计量资料以均数±标准差表示,多组间比较采用单因素方差分析,并用Tukey检验进行组间比较。
P
< 0.05时认为差异有统计学意义。
2. 结果
2.1. 细胞活性变化
2.1.1. 药物浓度确定
CCK-8结果显示,H9C2心肌细胞干预24 h后,与CON组相比,HG组细胞活性明显下降(
P
=0.003)。与HG组相比,MitoQ终浓度为0.1、0.5、1 μmol/mL的HG+MitoQ组活性均明显升高(
P
=0.002;
P
< 0.001;
P
=0.001),其中0.5 μmol/mL组活性最高(
图 1A
)。与CON组相比,随着ROT浓度升高,细胞活性逐渐下降(
P
< 0.001);1 μmol/mL时细胞状态不佳,故选取0.5 μmol/mL的MitoQ和ROT进行实验(
图 1B
)。
Viability of H9C2 cardiac muscle cells treated with different concentrations of mitoquinone (
A
), rotenone (ROT;
B
) or both (
C
). Data are presented as
Mean
±
SD
(
n
=5 or 4).
**
P
< 0.01,
***
P
< 0.001
vs
CON;
##
P
< 0.01,
###
P
< 0.001
vs
HG;
&&
P
< 0.01
vs
HG+MCC950.
2.1.2. 各组细胞活性变化
CCK-8结果显示,与CON组相比,HG组细胞活性明显下降(
P
=0.005)。与HG组相比,HG+MitoQ和HG+MCC950组活性明显升高(
P
=0.008;
P
< 0.001)。HG+MCC50+ROT组细胞活性与HG组相比无明显变化(
P
=0.976),与HG+MCC950组相比明显降低(
P
=0.001,
图 1C
)。
2.2. 各组细胞和线粒体内ROS水平的变化
如
图 2
所示,与CON组相比,HG组反映胞浆氧自由基变化的CellRox(绿色,
图 2A
)和反映线粒体氧自由基变化的MitoSox(红色,
图 2B
)平均荧光强度明显增强(
P
< 0.001)。与HG组相比,HG+MitoQ(
P
=0.004;
P
< 0.001)和HG+MCC950(
P
< 0.001)组荧光强度均明显下降;同时与HG+MCC950组相比,HG+MCC50+ROT组CellRox和MitoSox荧光强度也明显增强(
P
=0.008;
P
=0.016)。
Fluorescence staining of H9C2 cells with CellRox and MitoSox.
A
,
B
: Images of CellRox (green; scale bar=100 μm) and MitoSox (red; scale bar=20 μm) and DAPI (blue) fluorescence staining.
C
,
D
: Quantitative analysis of fluorescence intensity of CellRox and MitoSox staining (
Mean
±
SD
,
n
=5).
***
P
< 0.001
vs
CON;
##
P
< 0.01,
###
P
< 0.001
vs
HG;
&
P
< 0.05,
&&
P
< 0.01
vs
HG+ MCC950.
2.3. 各组心肌细胞NLRP3免疫荧光变化
与CON组相比,HG组红色荧光强度明显增强(
P
< 0.001)。与HG组相比,HG+MitoQ、HG+MCC950组红色荧光强度明显下降(
P
< 0.001;
P
=0.003)。与HG+MCC950组相比,HG+MCC50+ROT组NLRP3荧光强度也明显增强(
P
=0.034,
图 3
)。
Immunofluorescence staining of NLRP3 in H9C2 cells.
A
: Images of NLRP3 (red) and DAPI (blue) immunofluorescence staining (× 200, scale bar=50 μm).
B
: Quantitative analysis of NLRP3 fluorescence intensity (
Mean
±
SD
,
n
=5).
***
P
< 0.001
vs
CON;
##
P
< 0.01,
###
P
< 0.001
vs
HG;
&
P
< 0.05
vs
HG+MCC950.
2.4. 各组心肌细胞内NLRP3、GSDMD、GSDMD-NT和GPX4蛋白表达变化
Western blot结果显示,与CON组相比,HG组NLRP3及焦亡相关因子GSDMD和GSDMD-NT蛋白表达均明显升高(
P
=0.010;
P
=0.003;
P
< 0.001),GPX4蛋白明显降低(
P
< 0.001)。与HG组相比,HG+MitoQ和HG + MCC950组NLRP3(
P
=0.020;
P
=0.018)、GSDMD(
P
=0.001;
P
=0.002)和GSDMD-NT(
P
< 0.001;
P
=0.001)蛋白表达均明显下降,GPX4蛋白表达明显上升(
P
=0.002;
P
=0.003)。与HG组相比,HG+MCC950+ ROT组NLRP3(
P
=0.873)和GSDMD-NT(
P
=0.202)蛋白表达无明显变化,GSDMD降低(
P
=0.001);与HG+ MCC950组相比,HG + MCC950 + ROT组NLRP3和GSDMD-NT蛋白表达明显上升(
P
=0.024;
P
=0.033),GPX4蛋白表达下降(
P
=0.032,
图 4
)。
Changes of protein levels in each group.
A
,
B
: Western blots of NLRP3, GSDMD, GSDMD-NT, GPX4 and GAPDH in H9C2 cells.
C
-
F
: NLRP3, GSDMD, GSDMD-NT and GPX4 protein levels normalized by GAPDH levels (
Mean
±
SD
,
n
=5).
*
P
< 0.05,
**
P
< 0.01,
***
P
< 0.001
vs
CON;
#
P
< 0.05,
##
P
< 0.01,
###
P
< 0.001
vs
HG;
&
P
< 0.05
vs
HG+MCC950.
1.
Evangelista I, Nuti R, Picchioni T, et al. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int J Mol Sci. 2019;20(13):3264. doi: 10.3390/ijms20133264. [Evangelista I, Nuti R, Picchioni T, et al. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy[J]. Int J Mol Sci, 2019, 20(13): 3264.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
2.
Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 2020;7:12. doi: 10.3389/fcvm.2020.00012. [Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy[J]. Front Cardiovasc Med, 2020, 7: 12.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
3.
Chen Y, Hua Y, Li X, et al. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol. 2020;11:42. doi: 10.3389/fphar.2020.00042. [Chen Y, Hua Y, Li X, et al. Distinct types of cell death and the implication in diabetic cardiomyopathy[J]. Front Pharmacol, 2020, 11: 42.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
4.
Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17(8):588–606. doi: 10.1038/nrd.2018.97. [Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(8): 588-606.]
[
DOI
] [
PubMed
] [
Google Scholar
]
5.
Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res. 2021 doi: 10.1093/cvr/cvab010. [Takahashi M. NLRP3 inflammasome as a key driver of vascular disease[J]. Cardiovasc Res, 2021. DOI: 10.1093/cvr/cvab010.]
[
DOI
] [
PubMed
] [
Google Scholar
]
6.
An N, Gao Y, Si Z, et al. Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases. Front Immunol. 2019;10:1592. doi: 10.3389/fimmu.2019.01592. [An N, Gao Y, Si Z, et al. Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases [J]. Front Immunol, 2019, 10: 1592.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
7.
Yan Z, Qi Z, Yang X, et al. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol. 2021;236(8):5547–63. doi: 10.1002/jcp.30285. [Yan Z, Qi Z, Yang X, et al. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling[J]. J Cell Physiol, 2021, 236(8): 5547-63.]
[
DOI
] [
PubMed
] [
Google Scholar
]
8.
Wang H, Liu C, Zhao Y, et al. Mitochondria regulation in ferroptosis. Eur J Cell Biol. 2020;99(1):151058. doi: 10.1016/j.ejcb.2019.151058. [Wang H, Liu C, Zhao Y, et al. Mitochondria regulation in ferroptosis [J]. Eur J Cell Biol, 2020, 99(1): 151058.]
[
DOI
] [
PubMed
] [
Google Scholar
]
9.
Wang N, Ma H, Li J, et al. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J Mol Cell Cardiol. 2021;150:65–76. doi: 10.1016/j.yjmcc.2020.10.010. [Wang N, Ma H, Li J, et al. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes[J]. J Mol Cell Cardiol, 2021, 150: 65-76.]
[
DOI
] [
PubMed
] [
Google Scholar
]
10.
Battogtokh G, Choi YS, Kang DS, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B. 2018;8(6):862–80. doi: 10.1016/j.apsb.2018.05.006. [Battogtokh G, Choi YS, Kang DS, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives[J]. Acta Pharm Sin B, 2018, 8(6): 862-80.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
11.
Ribeiro Junior RF, Dabkowski ER, Shekar KC, et al. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radic Biol Med. 2018;117:18–29. doi: 10.1016/j.freeradbiomed.2018.01.012. [Ribeiro Junior RF, Dabkowski ER, Shekar KC, et al. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload[J]. Free Radic Biol Med, 2018, 117: 18-29.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
12.
Goh KY, He L, Song J, et al. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biol. 2019;21:101100. doi: 10.1016/j.redox.2019.101100. [Goh KY, He L, Song J, et al. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice[J]. Redox Biol, 2019, 21: 101100.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
13.
Turkseven S, Bolognesi M, Brocca A, et al. Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats. Am J Physiol Gastrointest Liver Physiol. 2020;318(2):G298–304. doi: 10.1152/ajpgi.00135.2019. [Turkseven S, Bolognesi M, Brocca A, et al. Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(2): G298-304.]
[
DOI
] [
PubMed
] [
Google Scholar
]
14.
Wu D, Chen Y, Sun Y, et al. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review. Inflammation. 2020;43(1):17–23. doi: 10.1007/s10753-019-01098-8. [Wu D, Chen Y, Sun Y, et al. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review [J]. Inflammation, 2020, 43(1): 17-23.]
[
DOI
] [
PubMed
] [
Google Scholar
]
15.
Sharma A, Choi JSY, Stefanovic N, et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis.
http://www.researchgate.net/publication/347662131_Specific_NLRP3_Inhibition_Protects_Against_Diabetes-Associated_Atherosclerosis
. Diabetes. 2020;70(3):772–87. doi: 10.2337/db20-0357. [Sharma A, Choi JSY, Stefanovic N, et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis[J]. Diabetes, 2020, 70(3): 772-87.]
[
DOI
] [
PubMed
] [
Google Scholar
]
16.
Gao RF, Li X, Xiang HY, et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. Int Immunopharmacol. 2021;90:107133. doi: 10.1016/j.intimp.2020.107133. [Gao RF, Li X, Xiang HY, et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice[J]. Int Immunopharmacol, 2021, 90: 107133.]
[
DOI
] [
PubMed
] [
Google Scholar
]
17.
Pokusa M, Hajdúchová D, Menichová V, et al. Vulnerability of subcellular structures to pathogenesis induced by rotenone in shsy5y cells.
http://www.researchgate.net/publication/350153790_Vulnerability_of_subcellular_structures_to_pathogenesis_induced_by_rotenone_in_SH-SY5Y_cells
. Physiol Res. 2021;70(1):89–99. doi: 10.33549/physiolres.934477. [Pokusa M, Hajdúchová D, Menichová V, et al. Vulnerability of subcellular structures to pathogenesis induced by rotenone in shsy5y cells [J]. Physiol Res, 2021, 70(1): 89-99.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
18.
Simões RF, Ferrão R, Silva MR, et al. Refinement of a differentiation protocol using neuroblastoma SH-SY5Y cells for use in neurotoxicology research. Food Chem Toxicol. 2021;149:111967. doi: 10.1016/j.fct.2021.111967. [Simões RF, Ferrão R, Silva MR, et al. Refinement of a differentiation protocol using neuroblastoma SH-SY5Y cells for use in neurotoxicology research[J]. Food Chem Toxicol, 2021, 149: 111967.]
[
DOI
] [
PubMed
] [
Google Scholar
]
19.
Yuan Q, Yang F, Dai S, et al. Aldehyde dehydrogenase 2 protects against sympathetic excitation-induced cardiac fibrosis. Biochem Biophys Res Commun. 2020;533(4):1427–34. doi: 10.1016/j.bbrc.2020.09.098. [Yuan Q, Yang F, Dai S, et al. Aldehyde dehydrogenase 2 protects against sympathetic excitation-induced cardiac fibrosis[J]. Biochem Biophys Res Commun, 2020, 533(4): 1427-34.]
[
DOI
] [
PubMed
] [
Google Scholar
]
20.
Chapa-Dubocq XR, Rodríguez-Graciani KM, Guzmán-Hernández R A, et al. Cardiac function is not susceptible to moderate disassembly of mitochondrial respiratory supercomplexes. Int J Mol Sci. 2020;21(5):1555. doi: 10.3390/ijms21051555. [Chapa-Dubocq XR, Rodríguez-Graciani KM, Guzmán-Hernández R A, et al. Cardiac function is not susceptible to moderate disassembly of mitochondrial respiratory supercomplexes[J]. Int J Mol Sci, 2020, 21(5): 1555.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
21.
Chen S, Wang Y, Zhang H, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells. Int J Biol Sci. 2019;15(7):1440–51. doi: 10.7150/ijbs.30193. [Chen S, Wang Y, Zhang H, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells [J]. Int J Biol Sci, 2019, 15(7): 1440-51.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
22.
Escribano-Lopez I, Bañuls C, Diaz-Morales N, et al. The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic Reticulum stress in pancreatic β cells exposed to hyperglycaemia. Cell Physiol Biochem. 2019;52(2):186–97. doi: 10.33594/000000013. [Escribano-Lopez I, Bañuls C, Diaz-Morales N, et al. The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic Reticulum stress in pancreatic β cells exposed to hyperglycaemia[J]. Cell Physiol Biochem, 2019, 52(2): 186-97.]
[
DOI
] [
PubMed
] [
Google Scholar
]
23.
Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556–9. doi: 10.1038/s41589-019-0277-7. [Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J]. Nat Chem Biol, 2019, 15(6): 556-9.]
[
DOI
] [
PubMed
] [
Google Scholar
]
24.
Zhou H, Cheang T, Su F, et al. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of dynamin-related protein 1 expression. Eur J Pharmacol. 2018;819:58–67. doi: 10.1016/j.ejphar.2017.11.040. [Zhou H, Cheang T, Su F, et al. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of dynamin-related protein 1 expression[J]. Eur J Pharmacol, 2018, 819: 58-67.]
[
DOI
] [
PubMed
] [
Google Scholar
]
25.
Niu YJ, Zhou W, Nie ZW, et al. Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos.
http://onlinelibrary.wiley.com/doi/pdf/10.1111/jpi.12627
. J Pineal Res. 2020;68(2):e12627. doi: 10.1111/jpi.12627. [Niu YJ, Zhou W, Nie ZW, et al. Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos[J]. J Pineal Res, 2020, 68(2): e12627.]
[
DOI
] [
PubMed
] [
Google Scholar
]
26.
Zhang X, Du L, Zhang W, et al. Therapeutic effects of baicalein on rotenone-induced Parkinson's disease through protecting mitochondrial function and biogenesis. Sci Rep. 2017;7(1):9968. doi: 10.1038/s41598-017-07442-y. [Zhang X, Du L, Zhang W, et al. Therapeutic effects of baicalein on rotenone-induced Parkinson's disease through protecting mitochondrial function and biogenesis [J]. Sci Rep, 2017, 7(1): 9968.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
27.
Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol. 2019;67:311–8. doi: 10.1016/j.intimp.2018.12.028. [Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases [J]. Int Immunopharmacol, 2019, 67: 311-8.]
[
DOI
] [
PubMed
] [
Google Scholar
]
28.
He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285–98. doi: 10.1038/cr.2015.139. [He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015, 25(12): 1285-98.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
29.
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85. doi: 10.1016/j.cell.2017.09.021. [Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-85.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
30.
Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172(3):409–22. doi: 10.1016/j.cell.2017.11.048. [Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-22. e21.]
[
DOI
] [
PubMed
] [
Google Scholar
]
31.
Park TJ, Park JH, Lee GS, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis. 2019;10(11):835. doi: 10.1038/s41419-019-2061-8. [Park TJ, Park JH, Lee GS, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes[J]. Cell Death Dis, 2019, 10(11): 835.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
32.
Li WY, Li W, Leng Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic Reticulum stress.
http://www.researchgate.net/publication/337808563_Ferroptosis_Is_Involved_in_Diabetes_Myocardial_IschemiaReperfusion_Injury_Through_Endoplasmic_Reticulum_Stress
. DNACell Biol. 2020;39(2):210–25. doi: 10.1089/dna.2019.5097. [Li WY, Li W, Leng Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic Reticulum stress [J]. DNACell Biol, 2020, 39(2): 210-25.]
[
DOI
] [
PubMed
] [
Google Scholar
]
33.
Escribano-Lopez I, Diaz-Morales N, Rovira-Llopis S, et al. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol. 2016;10:200–5. doi: 10.1016/j.redox.2016.10.017. [Escribano-Lopez I, Diaz-Morales N, Rovira-Llopis S, et al. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients[J]. Redox Biol, 2016, 10: 200-5.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
34.
Fink BD, Yu L, Coppey L, et al. Effect of mitoquinone on liver metabolism and steatosis in obese and diabetic rats.
http://onlinelibrary.wiley.com/doi/10.1002/prp2.701
. Pharmacol Res Perspect. 2021;9(1):e00701. doi: 10.1002/prp2.701. [Fink BD, Yu L, Coppey L, et al. Effect of mitoquinone on liver metabolism and steatosis in obese and diabetic rats[J]. Pharmacol Res Perspect, 2021, 9(1): e00701.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
35.
Yang MY, Fan Z, Zhang Z, et al. MitoQ protects against high glucoseinduced brain microvascular endothelial cells injury via the Nrf2/ HO-1 pathway. J Pharmacol Sci. 2021;145(1):105–14. doi: 10.1016/j.jphs.2020.10.007. [Yang MY, Fan Z, Zhang Z, et al. MitoQ protects against high glucoseinduced brain microvascular endothelial cells injury via the Nrf2/ HO-1 pathway[J]. J Pharmacol Sci, 2021, 145(1): 105-14.]
[
DOI
] [
PubMed
] [
Google Scholar
]
36.
Cao RP, Fang D, Wang JH, et al. ALDH2 overexpression alleviates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation.
http://www.ncbi.nlm.nih.gov/pubmed/31871948
. J Diabetes Res. 2019;2019:4857921. doi: 10.1155/2019/4857921. [Cao RP, Fang D, Wang JH, et al. ALDH2 overexpression alleviates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation[J]. J Diabetes Res, 2019, 2019: 4857921.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
37.
Luo B, Huang F, Liu Y, et al. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy. Front Physiol. 2017;8:519. doi: 10.3389/fphys.2017.00519. [Luo B, Huang F, Liu Y, et al. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy[J]. Front Physiol, 2017, 8: 519.]
[
DOI
] [
PMC free article
] [
PubMed
] [
Google Scholar
]
38.
吴 晓升, 项 静, 刘 靖华. 线粒体在NLRP3炎性小体激活过程中的双向调节作用.
https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY201804013.htm
. 现代免疫学. 2018;38(4):333–6. [吴晓升, 项静, 刘靖华. 线粒体在NLRP3炎性小体激活过程中的双向调节作用[J]. 现代免疫学, 2018, 38(4): 333-6.]
[
Google Scholar
]
39.
Bavkar LN, Patil RS, Rooge SB, et al. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor. Mol Cell Biochem. 2019;459(1/2):61–71. doi: 10.1007/s11010-019-03550-7?utm_content=null. [Bavkar LN, Patil RS, Rooge SB, et al. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor[J]. Mol Cell Biochem, 2019, 459(1/2): 61-71.]
[
DOI
] [
PubMed
] [
Google Scholar
]
Articles from Journal of Southern Medical University are provided here courtesy of
Editorial Department of Journal of Southern Medical University