字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
:
twitter line
研究生: 陳君俞
研究生(外文): Chen, Jiun-Yu
論文名稱: 電荷密度波誘導鐵酞菁分子於二硒化鈮上之重構
論文名稱(外文): Charge density wave induced rearrangement of FePc molecules on NbSe2
指導教授: 林俊良 林俊良引用關係
指導教授(外文): Lin, Chun-Liang
口試委員: 何孟書 簡紋濱 蘇維彬 吳建德
口試委員(外文): Ho, Mon-Shu Jian, Wen-Bin Su,Wei-Bin Wu, Chien-Te
口試日期: 2023-1-11
學位類別: 碩士
校院名稱: 國立陽明交通大學
系所名稱: 電子物理系所
學門: 自然科學學門
學類: 物理學類
論文種類: 學術論文
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 58
中文關鍵詞: 掃描探針顯微鏡 鐵酞菁 二硒化鈮 電荷密度波
外文關鍵詞: STM FePc NbSe2 Charge density waves
相關次數:
  • 被引用 被引用:0
  • 點閱 點閱:59
  • 評分 評分:
  • 下載 下載:0
  • 收藏至我的研究室書目清單 書目收藏:0
鄰近電子之間的競爭在強關聯系統中是一種相當複雜的現象,電荷密度波是由於強電子-聲子耦合及電荷調變產生新的週期,並於費米能階附近形成一個能隙。為了能深入理解因為晶格位移而產生電荷密度波的關係,因此透過成長不同對稱性的分子結構有利於觀察電荷密度波與分子在接面處間的交互作用以及電子特性。
在實驗中,透過熱蒸鍍系統蒸鍍有機分子鐵(II)酞菁(Iron(II) phthalocyanine, FePc)在2H二硒化鈮基板上,並逐漸增加分子覆蓋率後透過掃描穿隧式顯微鏡,觀察分子隨著覆蓋率不同受到電荷密度波影響隨之不同進而改變排列方式,以及利用掃描穿隧能譜針對特定結構進行電性分析,釐清分子與電荷密度波之間的物理機制並且開創了對於量子相有不同方向的研究方法。
Competition between neighboring electrons is a rather complex phenomenon in strongly correlated systems. Charge density waves (CDW), caused by strong electron-phonon coupling and charge modulation, will generate new periods and form an energy gap near the Fermi level. In order to understand comprehensively how charge density wave gives rise to new periodic lattices through charge modulation, investigation in different molecular symmetries structures will give the physics a better observation of the electronic properties and interaction between charge density waves and molecules at the interface.
We demonstrate an in-situ growth of iron (II) phthalocyanine (FePc) molecules on 2H-NbSe2 by thermal evaporation, we gradually increase the coverage and discover that FePc molecules will change their arrangement due to the influence of charge density waves under different coverages through scanning tunneling microscope. By conducting further electrical analysis for various structures, we try to clarify the physical mechanism and the complex interaction between the FePc molecules and charge density waves. With this investigation, we provide a more comprehensive perspective on the study of the mechanism for CDW pinning absorbed at the interface.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 過渡金屬二硫族化合物(Transition Metal Dichalcogenides, TMDs) 1
1.1.1 二硒化鈮(Niobium Diselenide, NbSe2) 3
1.2 金屬酞菁(Metal phthalocyanine, Mpc) 3
1.2.1鐵( II )酞菁(Iron(II) phthalocyanine, FePc) 4
1.3 超導(Superconductivity) 5
1.4 近藤效應(Kondo effect) 6
1.5 電荷密度波(Charge density wave,CDW) 7
1.6 研究動機(Motivation) 8
1.7 文獻回顧 9
1.7.1 鐵( II )酞菁(Iron(II) phthalocyanine, FePc)成長於單晶金(111) 9
1.7.2 錳酞菁(manganese phthalocyanine, MnPc)成長於二硒化鈮 11
1.7.3 二硒化鈮(Niobium Diselenide, NbSe2)之電荷密度波特性 12
第二章 實驗原理 14
2.1 掃描穿隧顯微鏡原理(Principle of STM) 14
2.1.1 量子穿隧效應(Quantum tunneling effect) 14
2.1.2巴丁穿隧理論(Bardeen’s tunneling theory) 16
2.1.3 掃描模式(Scanning mode) 17
2.2 掃描穿隧能譜(Scanning Tunneling Spectroscopy) 19
第三章 實驗儀器 21
3.1 真空系統(Vacuum System) 21
3.1.1 真空概念(Introduction of Vacuum) 21
3.1.2 超高真空系統(High vacuum system) 22
3.1.3真空抽氣系統(Pumping system) 23
3.1.3真空壓力量測計(Pressure measurement tool ) 26
3.2 離子槍系統(Ion sputtering system) 28
3.3 蒸鍍系統 (Evaporator system) 28
3.3.1薄膜成長機制(Thin film mechanism) 29
3.4 低溫超高真空磁場穿隧顯微鏡(LT UHV Magnetic Scanning Tunneling Microscopy) 31
3.4.1儀器構造(Instrument construction) 31
3.4.2 儀器型號:Unisoku 1300 (Instrument brand) 34
第四章 實驗方法 37
4.1 探針製備 37
4.2 樣品製備 38
第五章 結果與討論 39
5.1 77 K鐵( II )酞菁分子於單晶金(111)成長模式 39
5.2 2H-二硒化鈮(NbSe2)不同溫度之表面樣貌 41
5.3 鐵( II )酞菁分子於2H-NbSe2 (Bulk) 受電荷密度波影響之自我組裝行為 45
5.4 2H-NbSe2 (Bulk)不同溫度之電子能態特性 50
5.5 鐵( II )酞菁分子於2H-NbSe2 (Bulk)電荷密度波鄰近效應 52
第六章 結論 55
參考文獻 56
附錄 58
參考文獻
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] G. A. Ermolaev et al., npj 2D Materials and Applications 4, 21 (2020).
[3] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, Chemical Communications 53, 3054 (2017).
[4] S. Lin, X. Li, P. Wang, Z. Xu, S. Zhang, H. Zhong, Z. Wu, W. Xu, and H. Chen, Scientific Reports 5, 15103 (2015).
[5] S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, and J. Chen, Nature Communications 6, 8632 (2015).
[6] C.-S. Lian, C. Si, and W. Duan, Nano Letters 18, 2924 (2018).
[7] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nature Chemistry 5, 263 (2013).
[8] M. M. Ugeda et al., Nature Physics 12, 92 (2016).
[9] A. Braun and J. Tcherniac, Berichte der deutschen chemischen Gesellschaft 40, 2709 (1907).
[10] N. T. Boileau, R. Cranston, B. Mirka, O. A. Melville, and B. H. Lessard, RSC Advances 9, 21478 (2019).
[11] G. Guillaud, J. Simon, and J. P. Germain, Coordination Chemistry Reviews 178-180, 1433 (1998).
[12] A. N. Fernandes and T. H. Richardson, Journal of Materials Science 43, 1305 (2008).
[13] N. M. Ravindra, C. Prodan, S. Fnu, I. Padronl, and S. K. Sikha, JOM 59, 37 (2007).
[14] A. Zhao et al., Science 309, 1542 (2005).
[15] Y. F. Wang, J. Kröger, R. Berndt, H. Vázquez, M. Brandbyge, and M. Paulsson, Physical Review Letters 104, 176802 (2010).
[16] R. Li, N. Li, H. Wang, A. Weismann, Y. Zhang, S. Hou, K. Wu, and Y. Wang, Chemical Communications 54, 9135 (2018).
[17] N. Tsukahara et al., Physical Review Letters 102, 167203 (2009).
[18] R. Hiraoka, E. Minamitani, R. Arafune, N. Tsukahara, S. Watanabe, M. Kawai, and N. Takagi, Nature Communications 8, 16012 (2017).
[19] X. Zhang, C. Wolf, Y. Wang, H. Aubin, T. Bilgeri, P. Willke, A. J. Heinrich, and T. Choi, Nature Chemistry 14, 59 (2022).
[20] J.-Y. Gu, Z.-F. Cai, D. Wang, and L.-J. Wan, ACS Nano 10, 8746 (2016).
[21] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 108, 1175 (1957).
[22] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).
[23] P. M. Raju, 2013.
[24] J. Kondo, Progress of Theoretical Physics 32, 37 (1964).
[25] J.-H. Chen, L. Li, W. G. Cullen, E. D. Williams, and M. S. Fuhrer, Nature Physics 7, 535 (2011).
[26] Y.-h. Zhang, S. Kahle, T. Herden, C. Stroh, M. Mayor, U. Schlickum, M. Ternes, P. Wahl, and K. Kern, Nature Communications 4, 2110 (2013).
[27] H. K. D. H. Bhadeshia and C. M. Wayman, in Physical Metallurgy (Fifth Edition), edited by D. E. Laughlin, and K. Hono (Elsevier, Oxford, 2014), pp. 1021.
[28] N. Tsukahara, S. Shiraki, S. Itou, N. Ohta, N. Takagi, and M. Kawai, Physical Review Letters 106, 187201 (2011).
[29] P. Amrit, N. Kawakami, Y.-Y. Lai, R. Arafune, N. Takagi, and C.-L. Lin, The Journal of Physical Chemistry C (2022).
[30] N. Jiang, Y. Y. Zhang, Q. Liu, Z. H. Cheng, Z. T. Deng, S. X. Du, H. J. Gao, M. J. Beck, and S. T. Pantelides, Nano Letters 10, 1184 (2010).
[31] Q. Zhang et al., The Journal of Physical Chemistry Letters 12, 3545 (2021).
[32] K. Cho et al., Nature Communications 9, 2796 (2018).
[33] Y. Nakata, K. Sugawara, R. Shimizu, Y. Okada, P. Han, T. Hitosugi, K. Ueno, T. Sato, and T. Takahashi, NPG Asia Materials 8 (2016).
[34] C. J. Chen.
[35] R. Wiesendanger, Reviews of Modern Physics 81, 1495 (2009).
[36] Z. H. Cheng, L. Gao, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, X. B. He, S. X. Du, and H. J. Gao, The Journal of Physical Chemistry C 111, 2656 (2007).
[37] A. Soumyanarayanan, M. M. Yee, Y. He, J. van Wezel, D. J. Rahn, K. Rossnagel, E. W. Hudson, M. R. Norman, and J. E. Hoffman, Proceedings of the National Academy of Sciences 110, 1623 (2013).
電子全文 電子全文 ( 網際網路公開日期:20260111 )
連結至畢業學校之論文網頁 點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!