王志伟,符力耘,韩同城,巴晶. 2021. 岩石热弹性理论及其在地球物理中的应用. 地球与行星物理论评,52(6):623-633Wang Z W, Fu L Y, Han T C, Ba J. 2021. Review of thermoelasticity theory in rocks and its applications in geophysics. Reviews of Geophysics and Planetary Physics, 52(6): 623-633
引用本文:
王志伟,符力耘,韩同城,巴晶. 2021. 岩石热弹性理论及其在地球物理中的应用. 地球与行星物理论评,52(6):623-633
热弹性力学研究弹性体在非均匀温度场影响下的变形问题,它是经典弹性力学的推广. 和弹性力学相比,热弹性理论考虑温度的影响,更加准确地阐述弹性介质在温度影响下的物理状态. 岩石物理实验证明了岩石存在热弹现象,即岩石的弹性参数(特别是速度和弹性模量)随着温度的变化而变化. 岩石热弹性理论为由温度引起的弹性模量及速度异常提供了解释. 本文回顾了岩石热弹性的主要理论模型,介绍了热弹性理论相关的岩石物理实验及数值模拟工作,讨论了热弹性理论在地球物理领域应用的研究进展,旨在将热弹性理论引入深层高温环境油气勘探应用中,支撑深层温度异常地球物理预测技术的发展.
热弹性理论 /
岩石物理性质 /
弹性模量 /
波传播速度
Abstract:
Thermoelasticity describes the properties of elastomer under the influence of temperature, which is the generalization of elasticity. Compared with elasticity, thermoelasticity theory is more accurate to describe the physical state of elastic media under the influence of temperature. A large number of petrophysical experiments demonstrate the thermoelastic phenomenon of rocks, that is, the physical parameters (especially velocity and elastic modulus) of rocks change with temperature. The thermoelastic theory of rocks provides an explanation for the elastic moduli and velocity anomaly of rocks caused by temperature. In this paper, we review the progress of research on the application of thermoelastic theory in geophysics. Furthermore, we introduce main theoretical models experimental measurements, and numerical simulations related to thermoplastic theory. We introduce the thermoelastic theory into deep oil and gas exploration with the attempt to support the development of geophysical techniques for prediction of deep temperature anomalies.
Key words:
thermoelasticity /
petrophysical properties /
elastic moduli /
wave propagation velocity
陈新明, 李小双, 郭文兵. 2007. 粗砂岩高温后纵波波速特性的试验研究[J]. 能源技术与管理, 6: 6-7.
doi:
10.3969/j.issn.1672-9943-B.2007.01.004
Chen X M, Li X S, Guo W B. 2007. Experimental study on P-wave velocity characteristics of coarse sandstone after high temperature[J]. Energy technology and management, 6: 6-7 (in Chinese).
doi:
10.3969/j.issn.1672-9943-B.2007.01.004
杜守继, 马明, 陈浩华, 等. 2003. 花岗岩经历不同高温后纵波波速分析[J]. 岩石力学与工程学报, 22(11): 1803-1803.
doi:
10.3321/j.issn:1000-6915.2003.11.010
Du S J, Ma M, Chen H H, et al. 2003. Testing study on longitudinal wave characteristics of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 22(11): 1803-1803 (in Chinese).
doi:
10.3321/j.issn:1000-6915.2003.11.010
胡顺田, 刘文堂, 李军, 等. 2008. 热弹性介质中波的一类反射问题的解[J]. 地震, 28(2): 46-53.
doi:
10.3969/j.issn.1000-3274.2008.02.005
Hu S T, Liu W T, Li J, et al. 2008. The solution of a type of reflection problem of wave in the thermoelastic medium[J]. Earthquake, 28(2): 46-53 (in Chinese).
doi:
10.3969/j.issn.1000-3274.2008.02.005
蒋玺, 谢鸿森, 周文戈, 等. 2007. 1.0 GPa、高温下岩石熔融玻璃的弹性波速测量及其地球物理意义[J]. 地学前缘, 14(3): 158-164.
doi:
10.3321/j.issn:1005-2321.2007.03.014
Jiang X, Xie H S, Zhou W G, et al. 2007. Measurement of elastic wave velocities in rock glasses up to 900 ℃ at 1.0 GPa and their geophysical implications[J]. Earth Science Frontiers, 14(3): 158-164 (in Chinese).
doi:
10.3321/j.issn:1005-2321.2007.03.014
刘文堂, 胡顺田, 李军, 等. 2008. 地震波在热弹性介质中的衰减性质及其相应
Q
r
值的计算方法[J]. 地震, 28(2): 39-45.
doi:
10.3969/j.issn.1000-3274.2008.02.004
Liu W T, Hu S T, Li J, et al. 2008. Attenuation of seismic wave in thermal elastic medium and calculation of the corresponding
Q
r
value[J]. Earthquake, 28(2): 39-45 (in Chinese).
doi:
10.3969/j.issn.1000-3274.2008.02.004
王勤, 嵇少丞, 许志琴. 2007. 橄榄石的晶格优选定向、含水量与地震波各向异性:对大陆俯冲带变形环境的约束[J]. 岩石学报, 23(12): 3065-3077.
doi:
10.3969/j.issn.1000-0569.2007.12.003
Wang Q, Ji S C. Xu Z Q. 2007. Lattice-preferred orientation, water content and seismic anisotropy of olivine implications for deformation environment of continental subduction zones[J]. Acta Petrologica Sinaica, 23(12): 3065-3077 (in Chinese).Wang Q, Burlini L, Mainprice D, et al. 2009. Geochemistry, petrofabrics and seismic properties of eclogites from the Chinese Continental Scientific Drilling boreholes in the Sulu UHP terrane, eastern China[J]. Tectonophysics, 475(2): 251-266.
doi:
10.3969/j.issn.1000-0569.2007.12.003
席道瑛, 刘斌, 谢端, 等. 1998. 孔隙流体饱和砂岩的衰减与频率的相关性[J]. 石油地球物理勘探, 33(1): 66-70.
doi:
10.3321/j.issn:1000-7210.1998.01.009
Xi D Y, Liu B, Xie R, et al.1998. Relation between attenuation and frequency of vibration in fluid-saturated porous sandstone[J]. Oil Geophysical Prospecting, 33(1): 66-70 (in Chinese).
doi:
10.3321/j.issn:1000-7210.1998.01.009
席道瑛, 张程远, 刘小燕, 等. 2000. 饱和岩石的时温等效关系[J]. 物探化探计算技术, 22(2): 127-131.
doi:
10.3969/j.issn.1001-1749.2000.02.006
Xi D Y, Zhang C Y, Liu X Y, et al. 2000. Time-temperature equivalence of saturated rocks[J]. Geophysical and Geochemical Exploration, 22(2): 127-131 (in Chinese).
doi:
10.3969/j.issn.1001-1749.2000.02.006
闫治国, 朱合华, 邓涛, 等. 2006. 三种岩石高温后纵波波速特性的试验研究[J]. 岩土工程学报, 28(11): 2010-2014.
doi:
10.3321/j.issn:1000-4548.2006.11.017
Yan Z G, Zhu H H. Deng T, et al. 2006. Experimental study on longitudinal wave characteristics of tuff, granite and breccia after high temperature[J]. Chinese Journal of Geotechnical Engineering, 28(11): 2010-2014 (in Chinese).
doi:
10.3321/j.issn:1000-4548.2006.11.017
网站版权 © 2019《地球与行星物理论评(中英文)》编辑部
E-mail:
[email protected]
地址:北京市海淀区民族大学南路5号
邮编:100081
电话:010-68729337
北京仁和汇智信息技术有限公司
开发
技术支持:
[email protected]