相关文章推荐
干练的硬币  ·  TIDA-01573 参考设计| ...·  10 月前    · 
干练的硬币  ·  什么是激光雷达| Synopsys·  10 月前    · 
近年来,由于毫米波雷达具有穿透能力强、体积小巧、探测精度高等特性,因此被广泛应用于安全检测、零件无损探测和医学诊断等领域。然而,由于硬件发射带宽的限制,如何实现超高二维分辨率成为毫米波雷达应用中的挑战之一。采用雷达平台扫描形成二维孔径的方式可以实现高度向和方位向的二维高分辨。然而,在扫描过程中,毫米波雷达在高度维会产生稀疏的轨迹,使得高度向回波采样稀疏,进而降低成像质量。为了解决这一问题,本文提出了一种基于Hankel变换矩阵填充的毫米波雷达高分辨三维成像算法。该方法采用了矩阵填充算法对稀疏采样回波进行了恢复,保证了毫米波雷达在扫描平面的成像精度。本文首先分析了毫米波雷达高度-距离切面的低秩先验特性,为了解决稀疏轨迹采样时,数据整行整列缺失的问题,对回波数据矩阵采用Hankel变换进行重新构造,并分析构造后矩阵的稀疏-低秩先验特性;然后,提出了一种融合低秩与稀疏先验的基于截断的Schatten-p范数的矩阵填充算法,对回波进行填充重构,以保证稀疏轨迹毫米波雷达的三维分辨率。最后,通过仿真和多组实测数据,证明了采用本文方法可以在仅使用20%~30%的高度向回波时仍实现目标高分辨三维成像。 近年来,由于毫米波雷达具有穿透能力强、体积小巧、探测精度高等特性,因此被广泛应用于安全检测、零件无损探测和医学诊断等领域。然而,由于硬件发射带宽的限制,如何实现超高二维分辨率成为毫米波雷达应用中的挑战之一。采用雷达平台扫描形成二维孔径的方式可以实现高度向和方位向的二维高分辨。然而,在扫描过程中,毫米波雷达在高度维会产生稀疏的轨迹,使得高度向回波采样稀疏,进而降低成像质量。为了解决这一问题,本文提出了一种基于Hankel变换矩阵填充的毫米波雷达高分辨三维成像算法。该方法采用了矩阵填充算法对稀疏采样回波进行了恢复,保证了毫米波雷达在扫描平面的成像精度。本文首先分析了毫米波雷达高度-距离切面的低秩先验特性,为了解决稀疏轨迹采样时,数据整行整列缺失的问题,对回波数据矩阵采用Hankel变换进行重新构造,并分析构造后矩阵的稀疏-低秩先验特性;然后,提出了一种融合低秩与稀疏先验的基于截断的Schatten-p范数的矩阵填充算法,对回波进行填充重构,以保证稀疏轨迹毫米波雷达的三维分辨率。最后,通过仿真和多组实测数据,证明了采用本文方法可以在仅使用20%~30%的高度向回波时仍实现目标高分辨三维成像。 多站协同雷达目标识别旨在利用多站信息的互补性提升识别性能。传统多站协同目标识别方法未直接考虑站间数据差异问题,且通常采用相对简单的融合策略,难以取得准确、稳健的识别性能。该文针对多站协同雷达高分辨距离像(HRRP)目标识别问题,提出了一种基于角度引导的Transformer融合网络。该网络以Transformer作为特征提取主体结构,提取单站HRRP的局部和全局特征。并在此基础上设计了3个新的辅助模块促进多站特征融合学习,角度引导模块、前级特征交互模块以及深层注意力特征融合模块。首先,角度引导模块使用目标方位角度对站间数据差异进行建模,强化了所提特征与多站视角的对应关系,提升了特征稳健性与一致性。其次,前级特征交互模块和深层注意力特征融合模块相结合的融合策略,实现了对各站特征的多阶段层次化融合。最后,基于实测数据模拟多站场景进行协同识别实验,结果表明所提方法能够有效地提升多站协同时的目标识别性能。 多站协同雷达目标识别旨在利用多站信息的互补性提升识别性能。传统多站协同目标识别方法未直接考虑站间数据差异问题,且通常采用相对简单的融合策略,难以取得准确、稳健的识别性能。该文针对多站协同雷达高分辨距离像(HRRP)目标识别问题,提出了一种基于角度引导的Transformer融合网络。该网络以Transformer作为特征提取主体结构,提取单站HRRP的局部和全局特征。并在此基础上设计了3个新的辅助模块促进多站特征融合学习,角度引导模块、前级特征交互模块以及深层注意力特征融合模块。首先,角度引导模块使用目标方位角度对站间数据差异进行建模,强化了所提特征与多站视角的对应关系,提升了特征稳健性与一致性。其次,前级特征交互模块和深层注意力特征融合模块相结合的融合策略,实现了对各站特征的多阶段层次化融合。最后,基于实测数据模拟多站场景进行协同识别实验,结果表明所提方法能够有效地提升多站协同时的目标识别性能。 传统的组网雷达功率分配一般在干扰模型给定的情况下进行优化,而干扰机资源优化是在雷达功率分配方式给定情况下,这样的研究缺乏博弈和交互。考虑到日益严重的雷达和干扰机相互博弈的作战场景,该文提出了伴随压制干扰下组网雷达功率分配深度博弈问题,其中智能化的目标压制干扰采用深度强化学习(DRL)训练。首先在该问题中干扰机和组网雷达被映射为两个智能体,根据干扰模型和雷达检测模型建立了压制干扰下组网雷达的目标检测模型和最大化目标检测概率优化目标函数。在组网雷达智能体方面,由近端策略优化(PPO)策略网络生成雷达功率分配向量;在干扰机智能体方面,设计了混合策略网络来同时生成波束选择动作和功率分配动作;引入领域知识构建更加有效的奖励函数,目标检测模型、等功率分配策略和贪婪干扰功率分配策略3种领域知识分别用于生成组网雷达智能体和干扰机智能体的导向奖励,从而提高智能体的学习效率和性能。最后采用交替训练方法来学习两个智能体的策略网络参数。实验结果表明;当干扰机采用基于DRL的资源分配策略时,采用基于DRL的组网雷达功率分配在目标检测概率和运行速度两种指标上明显优于基于粒子群的组网雷达功率分配和基于人工鱼群的组网雷达功率分配。 传统的组网雷达功率分配一般在干扰模型给定的情况下进行优化,而干扰机资源优化是在雷达功率分配方式给定情况下,这样的研究缺乏博弈和交互。考虑到日益严重的雷达和干扰机相互博弈的作战场景,该文提出了伴随压制干扰下组网雷达功率分配深度博弈问题,其中智能化的目标压制干扰采用深度强化学习(DRL)训练。首先在该问题中干扰机和组网雷达被映射为两个智能体,根据干扰模型和雷达检测模型建立了压制干扰下组网雷达的目标检测模型和最大化目标检测概率优化目标函数。在组网雷达智能体方面,由近端策略优化(PPO)策略网络生成雷达功率分配向量;在干扰机智能体方面,设计了混合策略网络来同时生成波束选择动作和功率分配动作;引入领域知识构建更加有效的奖励函数,目标检测模型、等功率分配策略和贪婪干扰功率分配策略3种领域知识分别用于生成组网雷达智能体和干扰机智能体的导向奖励,从而提高智能体的学习效率和性能。最后采用交替训练方法来学习两个智能体的策略网络参数。实验结果表明;当干扰机采用基于DRL的资源分配策略时,采用基于DRL的组网雷达功率分配在目标检测概率和运行速度两种指标上明显优于基于粒子群的组网雷达功率分配和基于人工鱼群的组网雷达功率分配。 真实场景的高分辨率合成孔径雷达(SAR)图像大多是复杂的,对于地物场景来说,其背景中存在草地、树木、道路和建筑物等杂波,这些复杂背景杂波使得传统SAR图像目标检测算法的结果包含大量虚警和漏警,严重影响了SAR目标检测性能。该文提出一种基于特征分解卷积神经网络(CNN)的SAR图像目标检测方法,该方法在特征提取模块对输入图像提取特征后,通过特征分解模块分解出鉴别特征和干扰特征,最后将鉴别特征输入到多尺度检测模块进行目标检测。特征分解后去除的干扰特征是对目标检测不利的部分,其中包括复杂背景杂波,而保留的鉴别特征是对目标检测有利的部分,其中包括感兴趣目标,从而有效降低虚警和漏警,提高SAR目标检测性能。该文所提方法在MiniSAR实测数据集和SAR飞机检测实测数据集(SADD)上的F1-score值分别为0.9357和0.9211,与不加特征分解模块的单步多框检测器相比,所提方法的F1-score值分别提升了0.0613和0.0639。基于实测数据集的实验结果证明了所提方法对复杂场景SAR图像进行目标检测的有效性。 真实场景的高分辨率合成孔径雷达(SAR)图像大多是复杂的,对于地物场景来说,其背景中存在草地、树木、道路和建筑物等杂波,这些复杂背景杂波使得传统SAR图像目标检测算法的结果包含大量虚警和漏警,严重影响了SAR目标检测性能。该文提出一种基于特征分解卷积神经网络(CNN)的SAR图像目标检测方法,该方法在特征提取模块对输入图像提取特征后,通过特征分解模块分解出鉴别特征和干扰特征,最后将鉴别特征输入到多尺度检测模块进行目标检测。特征分解后去除的干扰特征是对目标检测不利的部分,其中包括复杂背景杂波,而保留的鉴别特征是对目标检测有利的部分,其中包括感兴趣目标,从而有效降低虚警和漏警,提高SAR目标检测性能。该文所提方法在MiniSAR实测数据集和SAR飞机检测实测数据集(SADD)上的F1-score值分别为0.9357和0.9211,与不加特征分解模块的单步多框检测器相比,所提方法的F1-score值分别提升了0.0613和0.0639。基于实测数据集的实验结果证明了所提方法对复杂场景SAR图像进行目标检测的有效性。 该文针对多雷达协同场景下的多任务实时规划问题,提出了一种基于任务效用最大化的多雷达协同在线任务规划模型。该模型以任务效用函数最大化为目标将多雷达协同任务分配建模成一个基于整数规划的多变量混合优化问题;随后提出了启发式穷举搜索算法和基于凸松弛的两步解耦算法,可在多项式时间内完成了该NP难优化问题的求解,且分别在优化性能和计算效率方面有所侧重。仿真实验表明,相比于可找到最优解的穷举搜索算法,该文提出算法可有效降低任务规划问题复杂度,提升问题求解效率,以满足在线任务分配的实时性要求。 该文针对多雷达协同场景下的多任务实时规划问题,提出了一种基于任务效用最大化的多雷达协同在线任务规划模型。该模型以任务效用函数最大化为目标将多雷达协同任务分配建模成一个基于整数规划的多变量混合优化问题;随后提出了启发式穷举搜索算法和基于凸松弛的两步解耦算法,可在多项式时间内完成了该NP难优化问题的求解,且分别在优化性能和计算效率方面有所侧重。仿真实验表明,相比于可找到最优解的穷举搜索算法,该文提出算法可有效降低任务规划问题复杂度,提升问题求解效率,以满足在线任务分配的实时性要求。 频控阵-多输入多输出(FDA-MIMO)雷达通过波束形成技术实现抗干扰的研究已经十分丰富。然而,在实际工作中,受元器件老化和存储设备容量等硬件因素的影响,计算得到的信号协方差矩阵可能会出现数据缺失的情况。为了克服协方差矩阵数据缺失对波束形成算法性能的影响,该文提出了一种基于深度学习的FDA-MIMO雷达协方差矩阵数据恢复方法,并建立了协方差矩阵恢复-自适应波束形成的两阶段处理框架;提出了一种双通道生成对抗网络(GAN)来解决矩阵数据恢复问题,该网络主要由鉴别器(D)和生成器(G)两部分组成:生成器主要功能是输出完整的矩阵数据,鉴别器则是判别数据为真实数据还是填补数据。整个网络通过鉴别器和生成器之间相互对抗使生成器生成样本接近于真实数据的分布,从而实现对协方差矩阵缺失数据的恢复。此外,考虑到协方差矩阵数据为复数,分别构造两个独立的GAN网络以满足矩阵数据实部和虚部的训练。最后,数值实验结果表明,协方差矩阵真实数据与恢复后的数据平均均方根误差仅为0.01量级,验证了所提方法能够有效恢复协方差矩阵的缺失数据。 频控阵-多输入多输出(FDA-MIMO)雷达通过波束形成技术实现抗干扰的研究已经十分丰富。然而,在实际工作中,受元器件老化和存储设备容量等硬件因素的影响,计算得到的信号协方差矩阵可能会出现数据缺失的情况。为了克服协方差矩阵数据缺失对波束形成算法性能的影响,该文提出了一种基于深度学习的FDA-MIMO雷达协方差矩阵数据恢复方法,并建立了协方差矩阵恢复-自适应波束形成的两阶段处理框架;提出了一种双通道生成对抗网络(GAN)来解决矩阵数据恢复问题,该网络主要由鉴别器(D)和生成器(G)两部分组成:生成器主要功能是输出完整的矩阵数据,鉴别器则是判别数据为真实数据还是填补数据。整个网络通过鉴别器和生成器之间相互对抗使生成器生成样本接近于真实数据的分布,从而实现对协方差矩阵缺失数据的恢复。此外,考虑到协方差矩阵数据为复数,分别构造两个独立的GAN网络以满足矩阵数据实部和虚部的训练。最后,数值实验结果表明,协方差矩阵真实数据与恢复后的数据平均均方根误差仅为0.01量级,验证了所提方法能够有效恢复协方差矩阵的缺失数据。 在电子信息系统对抗中,雷达、通信、侦察机和干扰机等多种电子设备通过简单的功能叠加式配备于作战平台已经难以应对敌方的综合性电子兵器,因此,多种电子设备的综合一体化是现代战争环境装备发展的必然趋势。其中,作为战场“千里眼”和“顺风耳”的雷达和通信设备无论在硬件结构还是在信号处理方法上都具有极强的相似性,两者的有机结合具有很强的实现性。因此,通感一体化(DFRC)系统受到了广泛的关注。其中,DFRC信号设计是DFRC系统研究的关键科学问题之一,通过电磁频谱共享方式,在空域、时域以及频域等多个维度上,同时实现雷达探测和信息通信两种功能。该文对以感知功能(雷达探测功能)为主功能的DFRC信号设计方法进行了深入、系统的综述。该文简要介绍了面向战场环境的DFRC系统的相关项目,进一步讨论了DFRC信号设计的研究进展。并在最后总结全文并对未来的研究方向进行了展望。 在电子信息系统对抗中,雷达、通信、侦察机和干扰机等多种电子设备通过简单的功能叠加式配备于作战平台已经难以应对敌方的综合性电子兵器,因此,多种电子设备的综合一体化是现代战争环境装备发展的必然趋势。其中,作为战场“千里眼”和“顺风耳”的雷达和通信设备无论在硬件结构还是在信号处理方法上都具有极强的相似性,两者的有机结合具有很强的实现性。因此,通感一体化(DFRC)系统受到了广泛的关注。其中,DFRC信号设计是DFRC系统研究的关键科学问题之一,通过电磁频谱共享方式,在空域、时域以及频域等多个维度上,同时实现雷达探测和信息通信两种功能。该文对以感知功能(雷达探测功能)为主功能的DFRC信号设计方法进行了深入、系统的综述。该文简要介绍了面向战场环境的DFRC系统的相关项目,进一步讨论了DFRC信号设计的研究进展。并在最后总结全文并对未来的研究方向进行了展望。 由于多输入多输出(MIMO)系统具有波形、空间分集和多路复用等优势,MIMO探通一体化(DFRC)系统通过共享软硬件资源以同时实现目标探测和保密通信功能受到了极大关注。该文针对基于预编码矩阵调制的MIMO探通一体化系统,提出了基于交替方向乘子(ADMM)的一体化信号矩阵设计方法。通过用户和窃听用户参考密码本约束下最大化方向图峰值主瓣旁瓣电平比(PMSR),保证了探测方向图性能的同时防止通信信息被窃听。针对预编码矩阵通信解调问题,提出了基于交替方向惩罚(ADPM)的排序学习优化解调方法,提升了一体化波形信息解调效率。数值仿真验证了所提设计方法实现探通一体化的有效性,与已有算法相比可实现多用户通信和更高的PMSR。 由于多输入多输出(MIMO)系统具有波形、空间分集和多路复用等优势,MIMO探通一体化(DFRC)系统通过共享软硬件资源以同时实现目标探测和保密通信功能受到了极大关注。该文针对基于预编码矩阵调制的MIMO探通一体化系统,提出了基于交替方向乘子(ADMM)的一体化信号矩阵设计方法。通过用户和窃听用户参考密码本约束下最大化方向图峰值主瓣旁瓣电平比(PMSR),保证了探测方向图性能的同时防止通信信息被窃听。针对预编码矩阵通信解调问题,提出了基于交替方向惩罚(ADPM)的排序学习优化解调方法,提升了一体化波形信息解调效率。数值仿真验证了所提设计方法实现探通一体化的有效性,与已有算法相比可实现多用户通信和更高的PMSR。 针对现有联合设计的通感一体化波形对运动目标探测性能不足的问题,该文提出了一种具有多普勒容忍性的通感一体化波形联合设计方案。首先,基于脉冲串模糊函数,推导了构造多普勒容忍波形等价于波形在相关区内具有极低的积分旁瓣电平。基于此,构建了以最小化一体化波形的加权积分旁瓣电平为优化准则,以发射波形的能量、峰均功率比以及与通信波形之间的相位差为约束条件的优化问题,从而实现具有多普勒容忍性的通感一体化波形的构造。由于该优化问题的非凸性,该文提出一种基于优化最小化的迭代优化算法对其进行求解。数值仿真实验表明,相比传统一体化波形,该文提出的一体化波形具有更高的多普勒容忍性和更低的误符号率,在保证通信质量的前提下显著提升了通感一体化系统对运动目标的探测性能。 针对现有联合设计的通感一体化波形对运动目标探测性能不足的问题,该文提出了一种具有多普勒容忍性的通感一体化波形联合设计方案。首先,基于脉冲串模糊函数,推导了构造多普勒容忍波形等价于波形在相关区内具有极低的积分旁瓣电平。基于此,构建了以最小化一体化波形的加权积分旁瓣电平为优化准则,以发射波形的能量、峰均功率比以及与通信波形之间的相位差为约束条件的优化问题,从而实现具有多普勒容忍性的通感一体化波形的构造。由于该优化问题的非凸性,该文提出一种基于优化最小化的迭代优化算法对其进行求解。数值仿真实验表明,相比传统一体化波形,该文提出的一体化波形具有更高的多普勒容忍性和更低的误符号率,在保证通信质量的前提下显著提升了通感一体化系统对运动目标的探测性能。 针对正交频分复用(OFDM)雷达通信一体化波形方案中循环前缀引起的弱回波掩盖问题和敌方战场低截获概率问题,该文提出了基于滤波器组的多载波偏移正交幅度调制(FBMC-OQAM)的低截获雷达通信一体化波形设计方案。分别构建FBMC雷达通信一体化波形与目标检测概率、通信信道容量之间的数学模型,在保证一定系统雷达与通信性能的条件约束下,设计最小化系统总发射功率联合优化问题,优化各个子载波发射功率分配方案。该算法利用测量值和信道状态信息,对下一个脉冲的发射波形参数进行优化设计,实现自适应传输。此外,从平均模糊函数角度分析了FBMC作为雷达信号的可行性和优势。仿真结果表明,与等功率分配方案相比,该文提出的功率分配方案可有效降低一体化系统总发射功率,从而实现低截获性能,并且FBMC波形可有效降低循环前缀引起的距离旁瓣,提高雷达分辨率与信息速率。 针对正交频分复用(OFDM)雷达通信一体化波形方案中循环前缀引起的弱回波掩盖问题和敌方战场低截获概率问题,该文提出了基于滤波器组的多载波偏移正交幅度调制(FBMC-OQAM)的低截获雷达通信一体化波形设计方案。分别构建FBMC雷达通信一体化波形与目标检测概率、通信信道容量之间的数学模型,在保证一定系统雷达与通信性能的条件约束下,设计最小化系统总发射功率联合优化问题,优化各个子载波发射功率分配方案。该算法利用测量值和信道状态信息,对下一个脉冲的发射波形参数进行优化设计,实现自适应传输。此外,从平均模糊函数角度分析了FBMC作为雷达信号的可行性和优势。仿真结果表明,与等功率分配方案相比,该文提出的功率分配方案可有效降低一体化系统总发射功率,从而实现低截获性能,并且FBMC波形可有效降低循环前缀引起的距离旁瓣,提高雷达分辨率与信息速率。 雷达通信一体化波形设计是近年来的研究热点。基于紧凑式阵列的一体化波形支持多方向目标探测和多用户通信,但面对主瓣内同方向不同距离的干扰和窃听行为时,存在抗主瓣干扰能力差、通信信息泄露等问题。因此,该文提出了一种基于分布式孔径的雷达通信一体化波形设计方法以操控波形在三维空间的分布。首先,根据近场信号传播模型建立波形合成约束,在指定位置合成所需的雷达和通信波形。然后,对各个子孔径增加恒模约束,构建以最小化发射功率为准则的一体化波形优化模型。由于模型的非凸性,采用交替投影算法进行迭代求解。仿真结果表明,该文所提方法在雷达目标和通信目标位置同时合成了期望波形,实现了三维空间波形操控。 雷达通信一体化波形设计是近年来的研究热点。基于紧凑式阵列的一体化波形支持多方向目标探测和多用户通信,但面对主瓣内同方向不同距离的干扰和窃听行为时,存在抗主瓣干扰能力差、通信信息泄露等问题。因此,该文提出了一种基于分布式孔径的雷达通信一体化波形设计方法以操控波形在三维空间的分布。首先,根据近场信号传播模型建立波形合成约束,在指定位置合成所需的雷达和通信波形。然后,对各个子孔径增加恒模约束,构建以最小化发射功率为准则的一体化波形优化模型。由于模型的非凸性,采用交替投影算法进行迭代求解。仿真结果表明,该文所提方法在雷达目标和通信目标位置同时合成了期望波形,实现了三维空间波形操控。 相较于稀疏标量阵列和均匀多极化阵列,稀疏多极化阵列由于其可感知信号的极化状态、避免极化失配以及增加阵列自由度、减小互耦效应与降低硬件成本等优点,对其进行系统性研究具有重要的应用价值和理论指导意义。稀疏多极化阵列的设计较之于稀疏标量阵列的设计更加多样化,因其不仅与天线阵元位置有关,还与天线阵元极化种类和阵元指向等因素有关。该文首先对近年来该领域内相关研究进行归纳总结,从非均匀稀疏、均匀稀疏、混合均匀与非均匀稀疏3种稀疏方式出发,介绍和探究了主流稀疏多极化阵列结构优化方式,然后从基于深度学习的稀疏多极化阵列优化设计、稀疏多极化多输入多输出(MIMO)雷达、稀疏极化频率分集阵(PFDA)雷达和稀疏PFDA-MIMO雷达、稀疏多极化智能超表面以及稀疏多极化阵列在家居智能通信和工业物联网等复杂室内场景下的应用等方面对未来的发展方向进行了展望。 相较于稀疏标量阵列和均匀多极化阵列,稀疏多极化阵列由于其可感知信号的极化状态、避免极化失配以及增加阵列自由度、减小互耦效应与降低硬件成本等优点,对其进行系统性研究具有重要的应用价值和理论指导意义。稀疏多极化阵列的设计较之于稀疏标量阵列的设计更加多样化,因其不仅与天线阵元位置有关,还与天线阵元极化种类和阵元指向等因素有关。该文首先对近年来该领域内相关研究进行归纳总结,从非均匀稀疏、均匀稀疏、混合均匀与非均匀稀疏3种稀疏方式出发,介绍和探究了主流稀疏多极化阵列结构优化方式,然后从基于深度学习的稀疏多极化阵列优化设计、稀疏多极化多输入多输出(MIMO)雷达、稀疏极化频率分集阵(PFDA)雷达和稀疏PFDA-MIMO雷达、稀疏多极化智能超表面以及稀疏多极化阵列在家居智能通信和工业物联网等复杂室内场景下的应用等方面对未来的发展方向进行了展望。 在精确制导、自主着陆、地形测绘等多种领域,雷达前视成像至关重要。传统的基于实波束扫描的前视成像方法受到实际雷达孔径约束难以获得高分辨图像。与整个成像场景相比,感兴趣目标通常只占一小部分区域,这种稀疏性使得压缩感知(CS)可以应用于高分辨率前视图像重建。然而,雷达回波中的强噪声影响了基于CS方法生成图像质量。受到最终生成图像具有低秩特性的启发,该文建立了一种联合低秩和稀疏特性的前视超分辨成像模型。为了有效地解决所提模型中的双重约束优化问题,提出了一种在交替方向乘子法(ADMM)框架下基于增广拉格朗日乘子(ALM)的前视图像重构方法。仿真和实测数据实验结果表明,所提方法能够有效提高雷达前视成像的方位分辨率,并且具有较强噪声鲁棒性。 在精确制导、自主着陆、地形测绘等多种领域,雷达前视成像至关重要。传统的基于实波束扫描的前视成像方法受到实际雷达孔径约束难以获得高分辨图像。与整个成像场景相比,感兴趣目标通常只占一小部分区域,这种稀疏性使得压缩感知(CS)可以应用于高分辨率前视图像重建。然而,雷达回波中的强噪声影响了基于CS方法生成图像质量。受到最终生成图像具有低秩特性的启发,该文建立了一种联合低秩和稀疏特性的前视超分辨成像模型。为了有效地解决所提模型中的双重约束优化问题,提出了一种在交替方向乘子法(ADMM)框架下基于增广拉格朗日乘子(ALM)的前视图像重构方法。仿真和实测数据实验结果表明,所提方法能够有效提高雷达前视成像的方位分辨率,并且具有较强噪声鲁棒性。 相对于窄带多普勒雷达,超宽带雷达能够同时获取目标的距离和多普勒信息,更利于行为识别。为了提高跌倒行为的识别性能,该文采用调频连续波超宽带雷达在两个真实的室内复杂场景下采集36名受试者的日常行为和跌倒的回波数据,建立了动作种类丰富的多场景跌倒检测数据集;通过预处理,获取受试者的距离时间谱、距离多普勒谱和时间多普勒谱;基于MobileNet-V3轻量级网络,设计了数据级、特征级和决策级3种雷达图谱深度学习融合网络。统计分析结果表明,该文提出的决策级融合方法相对于仅用单种图谱、数据级和特征级融合的方法,能够提高跌倒检测的性能(显著性检验方法得到的所有 P 值<0.003)。决策级融合方法的5折交叉验证的准确率为0.9956,在新场景下测试的准确率为0.9778,具有良好的泛化能力。 相对于窄带多普勒雷达,超宽带雷达能够同时获取目标的距离和多普勒信息,更利于行为识别。为了提高跌倒行为的识别性能,该文采用调频连续波超宽带雷达在两个真实的室内复杂场景下采集36名受试者的日常行为和跌倒的回波数据,建立了动作种类丰富的多场景跌倒检测数据集;通过预处理,获取受试者的距离时间谱、距离多普勒谱和时间多普勒谱;基于MobileNet-V3轻量级网络,设计了数据级、特征级和决策级3种雷达图谱深度学习融合网络。统计分析结果表明,该文提出的决策级融合方法相对于仅用单种图谱、数据级和特征级融合的方法,能够提高跌倒检测的性能(显著性检验方法得到的所有 P 值<0.003)。决策级融合方法的5折交叉验证的准确率为0.9956,在新场景下测试的准确率为0.9778,具有良好的泛化能力。 该文基于低慢小目标探测的地面预警雷达实测回波数据,系统性地提出了一种数据驱动式的目标检测方法框架,解决了两个关键问题:(1)针对当前数据驱动式的目标检测方法未能充分利用特征表示学习来发挥优势的问题,提出了回波时序依赖关系的表示学习方法,并给出无监督和有监督学习的两种实现方式;(2)低慢小目标在雷达探测范围中呈现稀疏性,目标-杂波数目的极度不均衡致使网络判决面严重向杂波倾斜。因此,该文提出利用异常值检测方法中的样本均衡思想,有效缓解了检测模型的判决偏移问题。最后基于实测数据对所提方法框架的各组成部分进行了消融实验,实验结果充分验证了回波时序性特征表示学习和样本均衡策略的有效性。在实测序贯验证条件下,两种检测方法均取得了优于多种CFAR方法的综合检测性能。 该文基于低慢小目标探测的地面预警雷达实测回波数据,系统性地提出了一种数据驱动式的目标检测方法框架,解决了两个关键问题:(1)针对当前数据驱动式的目标检测方法未能充分利用特征表示学习来发挥优势的问题,提出了回波时序依赖关系的表示学习方法,并给出无监督和有监督学习的两种实现方式;(2)低慢小目标在雷达探测范围中呈现稀疏性,目标-杂波数目的极度不均衡致使网络判决面严重向杂波倾斜。因此,该文提出利用异常值检测方法中的样本均衡思想,有效缓解了检测模型的判决偏移问题。最后基于实测数据对所提方法框架的各组成部分进行了消融实验,实验结果充分验证了回波时序性特征表示学习和样本均衡策略的有效性。在实测序贯验证条件下,两种检测方法均取得了优于多种CFAR方法的综合检测性能。 随着信息技术的发展和空战模式的改变,机载雷达告警接收机(RWR)成为现代战机不可缺少的电子战系统。为了更好地理解机载RWR,该文从接收机体制角度考虑,将机载RWR的系统架构划分成两个阶段,对每个阶段的特点和组成进行了分析。接着详细阐述了机载RWR的信号处理流程,并且梳理了与信号分选、信号识别和威胁评估相关的技术。最后,从实际运用出发,系统总结了机载RWR在复杂电磁环境中和应对新体制雷达中面临的挑战以及未来的发展需求。 随着信息技术的发展和空战模式的改变,机载雷达告警接收机(RWR)成为现代战机不可缺少的电子战系统。为了更好地理解机载RWR,该文从接收机体制角度考虑,将机载RWR的系统架构划分成两个阶段,对每个阶段的特点和组成进行了分析。接着详细阐述了机载RWR的信号处理流程,并且梳理了与信号分选、信号识别和威胁评估相关的技术。最后,从实际运用出发,系统总结了机载RWR在复杂电磁环境中和应对新体制雷达中面临的挑战以及未来的发展需求。 全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。 全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。 认知雷达通过不断与环境互动并从经验中学习,根据获得的知识不断调整其波形、参数和照射策略,以在复杂多变的场景中实现稳健的目标跟踪,其波形设计在提高跟踪性能方面一直备受关注。该文提出了一种用于跟踪高机动目标的认知雷达波形选择框架,该框架考虑了恒定速度(CV)、恒定加速度(CA)和协同转弯(CT)模型的组合,在该框架的基础上设计了基于准则优化(CBO)和熵奖励Q学习(ERQL)方法进行最优波形选择。该方法将雷达与目标集成到一个闭环中,发射波形随目标状态的变化实时更新,从而达到对目标的最佳跟踪性能。数值结果表明,与CBO方法相比,所提出的ERQL方法大大减少了获取最优波形的处理时间,并实现了与CBO相近的跟踪性能,相比于固定参数(Fixed-P)方法,极大地提高了机动目标的跟踪精度。 认知雷达通过不断与环境互动并从经验中学习,根据获得的知识不断调整其波形、参数和照射策略,以在复杂多变的场景中实现稳健的目标跟踪,其波形设计在提高跟踪性能方面一直备受关注。该文提出了一种用于跟踪高机动目标的认知雷达波形选择框架,该框架考虑了恒定速度(CV)、恒定加速度(CA)和协同转弯(CT)模型的组合,在该框架的基础上设计了基于准则优化(CBO)和熵奖励Q学习(ERQL)方法进行最优波形选择。该方法将雷达与目标集成到一个闭环中,发射波形随目标状态的变化实时更新,从而达到对目标的最佳跟踪性能。数值结果表明,与CBO方法相比,所提出的ERQL方法大大减少了获取最优波形的处理时间,并实现了与CBO相近的跟踪性能,相比于固定参数(Fixed-P)方法,极大地提高了机动目标的跟踪精度。 迁飞性虫害突发性强、危害范围广,严重威胁国家粮食安全。昆虫雷达是监测昆虫迁飞的最有效手段,可为迁飞虫害预警防控提供关键信息支撑。传统昆虫雷达通过低分辨波形、旋转线极化天线等方式,实现昆虫体重、体轴方向等生物学参数测量。新型昆虫雷达采用调频步进频高分辨波形、瞬时全极化体制,可大幅提升昆虫生物学参数测量精度。但是,在传统极化测量误差之外,调频步进频成像会给不同极化通道引入新的乘性误差分量,导致极化通道间不一致更加复杂,必须进行高精度极化校准。针对以上问题,该文结合调频步进频波形特点对全极化测量模型进行了优化,并设计了一种基于松姿态约束下双定标体(金属球和金属丝)联合的高分辨全极化雷达极化校准方法,补偿了系统通道间不一致对极化信息测量的影响;在此基础上,进一步提出了基于生物对称模型的昆虫体轴方向估计方法,解析推导分析了极化通道间交叉串扰对体轴方向估计的影响机制。最后,利用多频全极化雷达(X, Ku, Ka)进行了极化校准和昆虫轴向测量实验,实测昆虫体轴方向测量误差优于3°,验证了所提方法的有效性。 迁飞性虫害突发性强、危害范围广,严重威胁国家粮食安全。昆虫雷达是监测昆虫迁飞的最有效手段,可为迁飞虫害预警防控提供关键信息支撑。传统昆虫雷达通过低分辨波形、旋转线极化天线等方式,实现昆虫体重、体轴方向等生物学参数测量。新型昆虫雷达采用调频步进频高分辨波形、瞬时全极化体制,可大幅提升昆虫生物学参数测量精度。但是,在传统极化测量误差之外,调频步进频成像会给不同极化通道引入新的乘性误差分量,导致极化通道间不一致更加复杂,必须进行高精度极化校准。针对以上问题,该文结合调频步进频波形特点对全极化测量模型进行了优化,并设计了一种基于松姿态约束下双定标体(金属球和金属丝)联合的高分辨全极化雷达极化校准方法,补偿了系统通道间不一致对极化信息测量的影响;在此基础上,进一步提出了基于生物对称模型的昆虫体轴方向估计方法,解析推导分析了极化通道间交叉串扰对体轴方向估计的影响机制。最后,利用多频全极化雷达(X, Ku, Ka)进行了极化校准和昆虫轴向测量实验,实测昆虫体轴方向测量误差优于3°,验证了所提方法的有效性。 建筑物叠掩检测在城市三维合成孔径雷达(3D SAR)成像流程中是至关重要的步骤,其不仅影响成像效率,还直接影响最终成像的质量。目前,用于建筑物叠掩检测的算法往往难以提取远距离全局空间特征,也未能充分挖掘多通道SAR数据中关于叠掩的丰富特征信息,导致现有叠掩检测算法的精确度无法满足城市3D SAR成像的要求。为此,该文结合Vision Transformer (ViT)模型和卷积神经网络(CNN)的优点,提出了一种基于深度学习的SAR城市建筑区域叠掩精确检测方法。ViT模型能够通过自注意力机制有效提取全局特征和远距离特征,同时CNN有着很强的局部特征提取能力。此外,该文所提方法还基于专家知识增加了用于挖掘通道间叠掩特征和干涉相位叠掩特征的模块,提高算法的准确率与鲁棒性,同时也能够有效地减轻模型在小样本数据集上的训练压力。最后在该文构建的机载阵列SAR数据集上测试,实验结果表明,该文所提算法检测准确率达到94%以上,显著高于其他叠掩检测算法。 建筑物叠掩检测在城市三维合成孔径雷达(3D SAR)成像流程中是至关重要的步骤,其不仅影响成像效率,还直接影响最终成像的质量。目前,用于建筑物叠掩检测的算法往往难以提取远距离全局空间特征,也未能充分挖掘多通道SAR数据中关于叠掩的丰富特征信息,导致现有叠掩检测算法的精确度无法满足城市3D SAR成像的要求。为此,该文结合Vision Transformer (ViT)模型和卷积神经网络(CNN)的优点,提出了一种基于深度学习的SAR城市建筑区域叠掩精确检测方法。ViT模型能够通过自注意力机制有效提取全局特征和远距离特征,同时CNN有着很强的局部特征提取能力。此外,该文所提方法还基于专家知识增加了用于挖掘通道间叠掩特征和干涉相位叠掩特征的模块,提高算法的准确率与鲁棒性,同时也能够有效地减轻模型在小样本数据集上的训练压力。最后在该文构建的机载阵列SAR数据集上测试,实验结果表明,该文所提算法检测准确率达到94%以上,显著高于其他叠掩检测算法。 海上目标检测识别受制于海上目标及海杂波环境特性,基于实测数据认知海上目标的本质特征有利于推进目标检测识别技术进步。针对海上目标散射特性数据不足的问题,升级“雷达对海探测数据共享计划(SDRDSP)”,扩展雷达目标观测的物理维度、提升雷达及辅助数据采集能力,获取不同极化、海况下的海上目标及环境数据,构建海上目标双极化多海况散射特性数据集,并分析其统计分布特性、时间与空间相关性和多普勒谱特性,为数据使用提供支持。后续将推进海上目标类型与数量的持续积累,为海上目标检测识别性能提升和智能化发展提供数据支持。 海上目标检测识别受制于海上目标及海杂波环境特性,基于实测数据认知海上目标的本质特征有利于推进目标检测识别技术进步。针对海上目标散射特性数据不足的问题,升级“雷达对海探测数据共享计划(SDRDSP)”,扩展雷达目标观测的物理维度、提升雷达及辅助数据采集能力,获取不同极化、海况下的海上目标及环境数据,构建海上目标双极化多海况散射特性数据集,并分析其统计分布特性、时间与空间相关性和多普勒谱特性,为数据使用提供支持。后续将推进海上目标类型与数量的持续积累,为海上目标检测识别性能提升和智能化发展提供数据支持。