相关文章推荐
淡定的保温杯  ·  什么是分形| 集智百科| 集智俱乐部·  11 月前    · 
淡定的保温杯  ·  分形(Fractal)及分形维数(Fract ...·  11 月前    · 
淡定的保温杯  ·  分形理论在股票市场中的应用:Python实现 ...·  11 月前    · 
淡定的保温杯  ·  分形空间美服- TapTap·  11 月前    · 
飘逸的饭卡  ·  分形_百度百科·  1 年前    · 
小百科  ›  分形(Fractal)及分形维数(Fractal dimension)
分形理论 数学 自相似性 空间维度 分形维数
淡定的保温杯
11 月前
  • 1. 分形介绍
  • 2. 分形的定义
  • 3. 分形维数介绍
  • 4. 历史
  • 5. 缩放的作用(Role of scaling)
  • 6. D 不是唯一描述符
  • 7. 分形表面结构
  • 8. 例子
    • 8.8 Hausdorff dimension
      • 8.8.1 直观概念
      • 8.8.2 正式定义
        • 8.8.2.1 Hausdorff dimension
        • 8.8.2.2 Hausdorff content
      • 8.8.3 例子
      • 8.8.4 Hausdorff dimension 的性质
        • 8.8.4.1 Hausdorff dimension 和 inductive dimension
        • 8.8.4.2 Hausdorff dimension 和 Minkowski dimension
        • 8.8.4.3 Hausdorff dimensions 和 Frostman measures
        • 8.8.4.4 并集(union)和积(product)下的行为
      • 8.8.5 自相似集(Self-similar sets)
        • 8.8.5.1 开集条件(The open set condition)
      • 9. 从真实世界的数据估计
      • 10. 生成分形的常用技巧
      • 11. 分形景观(Fractal landscape)
      • 12. 布朗曲面(Brownian surface)
        • 12.1 例子
        • 12.2 分数布朗曲面的生成
      • 13. 自相似(Self-similarity)
        • 13.1 自仿射性(Self-affinity)
        • 13.2 定义
        • 13.3 动态缩放(Dynamic scaling)
          • 13.3.1 历史
          • 13.3.2 动态缩放的测试
          • 13.3.3 例子
        • 14. L-system
          • 14.1 起源
        • 迭代函数系统(Iterated function system)
        • 多重分形系统(Multifractal system)
        • 15. 分形软件
        图 随着量尺的长度越来越小,测得的海岸线总长度增加。


        在数学中,分形维数是几何学中的一个术语,用于提供模式中复杂性细节的合理统计指标。分形图案随其测量的尺度(scale)而变化。它也被扩展为一种模式的空间填充能力的度量,它告诉分形如何在分形维度上以不同的方式缩放,即不必是整数。

        “断裂(fractured)”维度的主要思想在数学中有着悠久的历史,但这个术语本身是由 Benoit Mandelbrot 根据他 1967 年关于自相似性的论文提出的,他在论文中讨论了分数维。在那篇论文中,Mandelbrot 引用了 Lewis Fry Richardson 之前的工作,描述了海岸线的测量长度随所用测量棒的长度而变化的反直觉概念。根据这一概念,海岸线的分形维数,量化了测量海岸线所需的缩放测量棒(scaled measuring sticks)的数量如何随着施加在测量尺上的缩放(scale)而变化。分形维数有几种正式的数学定义,它们建立在细节随尺度变化的基本概念之上。

        最终,分形维数一词成为曼德尔布罗特本人最习惯使用的短语,以概括他创造的分形一词的含义。经过多年的多次迭代,Mandelbrot 决定使用这种语言:“…在没有迂腐定义的情况下使用分形,将分形维数用作适用于所有变体的通用术语。”

        一个重要的例子是科赫雪花的分形维数。它的拓扑维数为 1,但绝不是可修正的:科赫雪花上任意两点之间的曲线长度是无限的。它没有一小块是线状的,而是由无数以不同角度连接的线段组成。可以直观地解释曲线的分形维数,将分形线想象成一个太详细而不是一维的对象,但太简单而不是二维的。因此它的维数最好不是用它通常的拓扑维数 1 来描述,而是用它的分形维数来描述,它通常是一个介于 1 和 2 之间的数字;在科赫雪花的情况下,它大约是 1.2619。

        1. 分形介绍

        在数学中,分形是包含任意小尺度的详细结构的几何形状,通常具有严格超过拓扑维数的分形维数。许多分形在不同的尺度上看起来很相似,如 Mandelbrot set 的连续放大所示。这种相似模式在越来越小的尺度上的展示称为自相似性( self-similarity ),也称为扩展对称性(expanding symmetry)或展开对称性(unfolding symmetry);如果这种复制在每个尺度上都完全相同,就像在 Menger sponge 中一样,则该形状称为仿射自相似( affine self-similar )。分形几何(Fractal geometry)属于测度论的数学分支。

        图 放大 Mandelbrot set 的边界


        分形与有限几何图形的不同之处之一是它们的缩放方式。将填充多边形的边长加倍会使其面积乘以 4,即 2(新边长与旧边长之比)的 2 次方(填充多边形的常规尺寸)。同样,如果填充球体的半径加倍,则其体积会增加 8,即 2(新半径与旧半径之比)的 3 次方(填充球体的常规尺寸)。然而,如果分形的一维长度全部加倍,则分形的空间内容(spatial content)按不一定为整数且通常大于其常规维数的幂缩放。这种幂称为几何对象的分形维数,以区别于常规维数(正式称为拓扑维数)。

        在分析上,许多分形无处可微。无限分形曲线可以被认为是与普通线不同的空间蜿蜒曲折——虽然它在拓扑上仍然是一维的,但它的分形维数表明它比普通线更有效地局部填充空间。

        从 17 世纪的递归概念开始,分形通过越来越严格的数学处理,在 19 世纪由 Bernard Bolzano、Bernhard Riemann 和 Karl Weierstrass 的开创性工作发展到对连续但不可微分函数的研究,到 20 世纪分形这个词的创造,随后在 20 世纪人们对分形和基于计算机的建模的兴趣迅速增长。

        对于分形的概念应该如何正式定义,数学家之间存在一些分歧。Mandelbrot 自己将其总结为“美丽、该死的坚硬、越来越有用。这就是分形。”更正式地说,1982 年 Mandelbrot 将分形定义如下:“根据定义,分形是 Hausdorff–Besicovitch 维数严格超过拓扑维数。”后来,他认为这过于严格,他将定义简化并扩展为:“分形是一种粗糙或零碎的几何形状,可以分成多个部分,每个部分(至少近似)再后来,Mandelbrot 提出“在没有迂腐定义的情况下使用分形,将分形维数用作适用于所有变体的通用术语”。

        2. 分形的定义

        Mandelbrot 发表的描述几何分形的一个经常被引用的描述是“一个粗糙的或碎片化的几何形状,可以分成多个部分,每个部分(至少大约)是整体的缩小副本”;这通常有帮助但有限。作者不同意分形的确切定义,但通常会详细阐述自相似的基本思想以及分形与它们所嵌入的空间之间的不寻常关系。

        一致同意的一点是,分形图案以分形维数为特征,但是尽管这些数字量化了复杂性(即随着尺度的变化而改变细节),但它们既没有唯一地描述也没有指定如何构建特定分形图案的细节。1975 年,Mandelbrot 创造了“分形”一词,用来表示 Hausdorff–Besicovitch dimension 大于其拓扑维数的对象。但是,希尔伯特曲线( Hilbert curve )等空间填充曲线无法满足这一要求。

        由于为分形找到一个定义所涉及的麻烦,一些人认为根本不应该严格定义分形。根据 Falconer 的说法,分形应该仅具有以下特征的格式塔一般特征:

        • 自相似性,可能包括:

          • 精确自相似(Exact self-similarity):在所有尺度上都相同,例如 Koch snowflake;
          • 准自相似性(Quasi self-similarity):在不同尺度下逼近相同的模式;可能包含扭曲和退化形式的整个分形的小副本; 例如,Mandelbrot set 的卫星是整个集的近似值,但不是精确的副本;
          • 统计自相似性(Statistical self-similarity):随机重复一种模式,以便跨尺度保留数值或统计措施;例如,随机生成的分形,如著名的英国海岸线示例,人们不会期望找到像定义分形(如科赫雪花)的重复单元一样整齐地缩放和重复的片段;
          • 定性自相似性(Qualitative self-similarity):如时间序列;
          • 多重分形缩放(Multifractal scaling):以不止一个分形维数或缩放规则为特征
        • 任意小尺度的精细或详细结构。这种结构的结果是分形可能具有涌现特性;

        • 局部和全局的不规则性,除了递归定义的阶段序列的限制外,不能用传统的欧几里德几何语言轻易描述。 对于分形图案的图像,这已通过诸如“平滑地堆积表面”和“漩涡上的漩涡”等短语表达。

        作为一个整体,这些标准构成了排除某些情况的指南,例如那些可能自相似但没有其他典型分形特征的情况。 例如,一条直线是自相似的,但不是分形的,因为它缺乏细节,并且很容易用欧几里德语言描述,而不需要递归。

        3. 分形维数介绍

        图 一个 32 段二次分形([quadric fractal](https://en.wikipedia.org/wiki/Fractal#iterated))缩放并通过不同大小的框查看。该模式说明了自相似性。该分形的理论分形维数为 5/3 ≈ 1.67;使用分形分析软件,其盒计数([box counting](https://en.wikipedia.org/wiki/Box_counting))分析的经验分形维数为 ±1%。


        分形维数是通过将其复杂性量化为细节变化与尺度变化的比率来表征分形模式或集合的指标。几种类型的分形维数可以在理论上和经验上进行测量。分形维数用于表征从抽象到实际现象(包括湍流)的范围广泛的物体,河流网络,城市发展,人体生理学,医学,和市场趋势。分数维数(fractional dimension)或分形维数(fractal dimension)的基本概念在数学中有着悠久的历史,可以追溯到 1600 年代,但术语分形和分形维数是由数学家 Benoit Mandelbrot 在 1975 年创造的。

        分形维数最初被用作表征复杂几何形式的指标,对于复杂几何形式,细节似乎比整体画面更重要。对于描述普通几何形状的集合,理论分形维数等于集合的熟悉的欧几里德维数或拓扑维数。因此,对于描述点的集合(0维集合),它为 0;1 用于描述线的集合(只有长度的一维集合);2 用于描述表面的集合(具有长度和宽度的二维集合);3 用于描述体积的集合(具有长度、宽度和高度的 3 维集合)。但这对于分形集会发生变化。 如果一个集合的理论分形维数超过其拓扑维数,则该集合被认为具有分形几何(fractal geometry) 。

        与拓扑维度不同,分形指数可以采用非整数值,表明一个集合在定性和定量上填充其空间的方式不同于普通几何集合。例如,分形维数非常接近 1(比如 1.10)的曲线表现得非常像一条普通直线,但分形维数为 1.9 的曲线在空间中蜿蜒曲折,非常接近于一个曲面。类似地,分形维数为 2.1 的表面非常像普通表面一样填充空间,但分形维数为 2.9 的表面几乎像一个体积一样折叠和流动以填充空间。这种一般关系 可以在上图的分形曲线图像中看到——32 段轮廓,回旋和空间填充,具有 1.67 的分形维数,相比之下明显不太复杂的 Koch curve,如下图,其分形维数约为 1.2619:

        图 Koch curve 分形维数的计算过程。其中虚线为缩放之后 4 个片段的组成原先的总片段,此时每个片段相比原先的片段缩放了 1/3,于是维数可以根据公式得出 D=ln(1/4)/ln(1/3)≈1.2619。


        分形维数大于其拓扑维数是指与通常感知的几何形状相比,分形如何缩放。例如,一条直线通常被理解为一维的;如果这样的图形被重新平铺成原始长度的 D 。这个数叫做 Koch curve 的分形维数;它不是通常认为的曲线维度。一般来说,分形的一个关键属性是分形维数不同于通常理解的维数(正式称为拓扑维数)。

        但是值得注意的是缩放的倍数是离散的,而不是连续的,这又体现了与拓扑维度的区别 。

        这也导致理解第三个特征,即作为数学方程的分形是“无处可微”的。在具体意义上,这意味着分形无法以传统方式测量。详细地说,在试图找到波浪非分形曲线的长度时,可以找到一些足够小的测量工具的直段,以端到端地放置在波浪上,这些段可以变得足够小以被认为符合用卷尺测量的正常方式的曲线。但是在测量像 Koch curve 这样的无限“摇摆”的分形曲线时,永远找不到足够小的直段来符合曲线,因为锯齿状的图案总是会以任意小的尺度重新出现,本质上会拉一点 每次尝试将卷尺越来越紧地贴合曲线时,将更多的卷尺计入总长度。结果是必须需要无限大的胶带才能完美地覆盖整个曲线,即雪花的周长是无限大的。

        增加的分形维数与空间填充的关系可能被认为是指分形维数测量密度,但事实并非如此;两者并不严格相关。相反,分形维数衡量复杂性,这是一个与分形的某些关键特征相关的概念:自相似性( self-similarity )和细节或不规则性( detail or irregularity )。这些特征在分形曲线的两个示例中很明显。两者都是拓扑维数为 1 的曲线,因此人们可能希望能够像测量普通曲线一样测量它们的长度和导数。但我们不能做这两件事,因为分形曲线具有普通曲线所缺乏的自相似性和细节形式的复杂性。自相似性在于无限缩放,细节在于每个集合的定义元素。这些曲线上任意两点之间的长度都是无限大的,无论这两点离得有多近,这意味着不可能通过将曲线分成许多小段来近似这种曲线的长度。每个较小的部分都由无限数量的缩放段组成,看起来与第一次迭代完全一样。这些不是可修正的曲线( rectifiable curves ),这意味着它们不能通过被分解成许多近似于它们各自长度的段来测量。不能通过找到它们的长度和导数来有意义地表征它们。然而,它们的分形维数是可以确定的,这表明两者都比普通线填充空间多但比表面少,并允许它们在这方面进行比较。

        上面描述的两条分形曲线显示了一种自相似性,这种自相似性与易于可视化的重复细节单元完全一致。这种结构可以扩展到其他空间(例如,将 Koch curve 扩展到 3 维空间的分形理论 D = 2.5849 )。然而,如此整齐可数的复杂性只是分形中存在的自相似性和细节的一个例子。例如,英国海岸线的例子展示了具有近似比例的近似模式的自相似性。总的来说,分形表现出几种类型和程度的自相似性和细节,可能不容易形象化。这些包括,例如,奇异吸引子( strange attractors ),其细节在本质上被描述为光滑的部分堆积, Julia set ,可以看作是复杂的漩涡上的漩涡,以及心率,这是一种随着时间不断重复和缩放的粗糙尖峰图案。如果不使用复杂的分析方法,分形复杂性可能并不总是可以分解为容易掌握的细节和尺度单位,但它仍然可以通过分形维数进行量化。

        4. 历史

        分形的历史追溯了一条从主要理论研究到计算机图形学现代应用的道路,几位著名人士在此过程中贡献了规范的分形形式。传统非洲建筑的一个共同主题是分形缩放的使用,结构的小部分往往看起来与较大的部分相似,例如由圆形房屋组成的圆形村庄。根据 Pickover 的说法,分形背后的数学在 17 世纪开始形成,当时数学家和哲学家 Gottfried Leibniz 正在思考递归自相似性(尽管他错误地认为只有直线在这个意义上是自相似的)。

        在他的著作中,莱布尼茨使用了“分数指数”一词,但遗憾的是“几何学”还不知道它们。事实上,根据各种历史记载,在那之后很少有数学家解决这些问题和工作 那些做过的人仍然模糊不清,主要是因为对这些不熟悉的新兴概念的抵制,这些概念有时被称为数学“怪物”。因此,直到两个世纪过去了,Karl Weierstrass 才在 1872 年 7 月 18 日提出了带有图形的函数的第一个定义,该图形在今天被认为是分形,具有处处连续但处处不可微的非直观属性。

        此外,商差随着求和指数的增加而变得任意大。不久之后,在 1883 年,参加了 Weierstrass 讲座的 Georg Cantor 发表了被称为 Cantor 集的实线子集的例子,它具有不寻常的性质,现在被认为是分形。同样在那个世纪的最后一部分, Felix Klein 和 Henri Poincaré 引入了一种后来被称为“自逆(self-inverse)”分形的分形类别。

        图 Cantor (ternary) set。


        下一个里程碑发生在 1904 年,当时 Helge von Koch 扩展了 Poincaré 的思想并且不满意 Weierstrass 的抽象和分析定义,给出了一个更几何的定义,包括具有类似功能的手绘图像,现在称为 Koch snowflake。另一个里程碑出现在十年后的 1915 年,当时 Wacław Sierpiński 建造了他著名的三角形,一年后,他建造了地毯。到 1918 年,两位法国数学家 Pierre Fatou 和 Gaston Julia 虽然独立工作,但基本上同时得出了描述现在被视为与映射复数和迭代函数相关的分形行为的结果,并导致了关于吸引子和排斥子的进一步想法(即, 吸引或排斥其他点的点),这在分形研究中变得非常重要。

        在该工作提交后不久,到 1918 年 3 月,Felix Hausdorff 扩展了“维度(dimension)”的定义,对于分形定义的演变来说意义重大,以允许集合具有非整数维度。Paul Lévy 进一步提出了自相似曲线的想法,他在 1938 年的论文“平面或空间曲线和由与整体相似的部分组成的曲面”中描述了一种新的分形曲线,即 Lévy C curve 。

        图 Julia set,与 Mandelbrot set 有关的分形。


        不同的研究人员假设,如果没有现代计算机图形学的帮助,早期的研究人员仅限于他们可以在手工绘图中描绘的内容,因此缺乏可视化美丽和欣赏他们发现的许多模式的一些含义的方法(the 例如,Julia set 只能通过几次迭代才能可视化为非常简单的图画)。然而,在 1960 年代,当 Benoit Mandelbrot 开始写关于自相似性的文章时,情况发生了变化“ How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension ” ,建立在 Lewis Fry Richardson 早期工作的基础上。

        1975 年 Mandelbrot 巩固了数百年的思想和数学发展,创造了“分形”一词,并用引人注目的计算机构建的可视化来说明他的数学定义。这些图像,例如他的经典 Mandelbrot set,俘获了大众的想象力;其中许多是基于递归的,导致了术语“分形”的流行含义。

        分形维数和分形这两个术语是 Mandelbrot 于 1975 年创造的,大约在他发表关于英国海岸线自相似性的论文十年后。各种历史权威都认为他还综合了几个世纪以来复杂的理论数学和工程工作,并以一种新的方式应用它们来研究无法用通常的线性术语描述的复杂几何形状。Mandelbrot 论述的分形维数的最早根源可以清楚地追溯到关于不可微、无限自相似函数的著作,这些函数在分形的数学定义中很重要,大约在 1600 年代中期微积分被发现的时候。在那之后,关于此类函数的出版工作有一段时间停滞不前,然后在 1800 年代后期开始更新,发布了今天称为规范分形(canonical fractals)的数学函数和集合(例如同名作品 von Koch、Sierpiński 和 Julia 的著作),但在提出他们的时候通常被认为是对立的数学“怪物”。这些作品伴随着也许是分形维数概念发展的最关键点,通过 Hausdorff 在 1900 年代早期的工作,他定义了一个“分数(fractional)”维数,这个维数后来以他的名字命名,并且在现代分形定义中经常被引用。

        D 表示的缩放不能继续超过其最小组件的点,即像素。然而,图像所代表的理论模式没有离散的像素状片段,而是由无限数量的无限缩放片段组成,并且确实具有所声称的分形维数。

        6. D 不是唯一描述符

        与线、正方形和立方体确定尺寸的情况一样,分形维度是不唯一定义模式的一般描述符。例如,上面讨论的科赫分形的 图 两个 [L-systems](https://en.wikipedia.org/wiki/L-systems) 分支分形是通过每 1/3 缩放产生 4 个新部分而形成的,因此与 Koch curve 具有相同的理论值 $D$。经验区域计数([box counting](https://en.wikipedia.org/wiki/Box_counting))D 已被证明具有 2% 的准确度。


        有关如何构建分形图案的示例,请参阅
        Fractal 、 Sierpinski triangle 、 Mandelbrot set 、 Diffusion limited aggregation 、 L-System 。

        7. 分形表面结构

        分形的概念越来越多地应用于表面科学领域,在表面特性和功能特性之间架起了一座桥梁。许多表面描述符用于解释名义上平坦表面的结构,这些表面通常在多个长度尺度上表现出自仿射特征(self-affine features)。平均表面粗糙度,通常表示为 R RMS ​ )。然而,人们发现许多物理表面现象不能很容易地参照此类描述符来解释,因此分形维数越来越多地应用于建立表面结构在缩放行为和性能方面的相关性。表面的分形维数已被用来解释和更好地理解接触力学领域的现象,摩擦行为,电接触电阻和透明导电氧化物。

        8. 例子

        图 增加表面分形的图示。自仿射表面(左)和相应的表面轮廓(右)显示分形维数 D_{f} 递增。


        本文中描述的分形维数概念是复杂结构的基本视图。选择此处讨论的示例是为了清楚起见,并且提前知道缩放单位和比率。然而,在实践中,分形维数可以使用近似比例和细节的技术来确定,这些技术是根据大小与比例的对数与对数图上的回归线估计的限制来近似的。下面列出了不同类型的分形维数的几种正式数学定义。尽管对于具有精确仿射自相似性的紧集,所有这些维度都重合,但通常它们并不等价:

        • Box counting dimension : {\displaystyle D_{0}=\lim _{\varepsilon \to 0}{\frac {\log N(\varepsilon )}{\log {\frac {1}{\varepsilon }}}}} D 0 ​ = ε → 0 lim ​ lo g ε 1 ​ lo g N ( ε ) ​

          • Information dimension : {\displaystyle D_{1}=\lim _{\varepsilon \to 0}{\frac {-\langle \log p_{\varepsilon }\rangle }{\log {\frac {1}{\varepsilon }} }}} D 1 ​ = ε → 0 lim ​ lo g ε 1 ​ − ⟨ lo g p ε ​ ⟩ ​

            • Correlation dimension 关联维度: {\displaystyle D_{2}=\lim _{M\to \infty }\lim _{\varepsilon \to 0}{\frac {\log(g_{\varepsilon }/M^{2})}{ \log \varepsilon }}} D 2 ​ = M → ∞ lim ​ ε → 0 lim ​ lo g ε lo g ( g ε ​ / M 2 ) ​

              • Generalized or Rényi dimensions:box-counting、information 和 correlation dimensions 可以看作是 {\displaystyle D_{\alpha }=\lim _{\varepsilon \to 0}{\frac { {\frac {1}{\alpha -1}}\log(\sum _{i}p_{i} ^{\alpha })}{\log \varepsilon }}} D α ​ = ε → 0 lim ​ lo g ε α − 1 1 ​ lo g ( ∑ i ​ p i α ​ ) ​

                • Higuchi dimension
                C_H^d(S):=\inf\Bigl\{\sum_i r_i^d:\text{ there is a cover of } S\text{ by balls with radii }r_i>0\Bigr\}.
                C H d ​ ( S ) := in f { i ∑ ​ r i d ​ : there is a cover of S by balls with radii r i ​ > 0 } .

                dim H ​ ( X ) := in f { d ≥ 0 : C H d ​ ( X ) = 0 }

                • Packing dimension

                • Assouad dimension

                • Local connected dimension

                8.8 Hausdorff dimension

                图 非整数维度的示例。Koch curve 的前四次迭代,每次迭代后,所有原始线段都被替换为四个片段,每个片段都是原始长度的 1/3 的自相似副本。Hausdorff dimension 的一种形式使用比例因子 (S = 3) 和自相似对象的数量 (N = 4) 来计算维度 D,在第一次迭代后为 D = (log N)/(log S) = (log 4)/(log 3) ≈ 1.26。


                在数学中,Hausdorff dimension 是粗糙度的量度,或者更具体地说,是分形维数,它于 1918 年由数学家 Felix Hausdorff 首次引入。例如,单个点的 Hausdorff dimension 为零,线段的维度为 1,正方形的维度为 2,立方体的维度为 3。也就是说,对于定义平滑形状或具有少量角的形状(传统几何和科学的形状)的点集,Hausdorff 维数是符合通常意义上的维数的整数,也称为拓扑维数。然而,其还开发了一些公式,允许计算其他不太简单的对象的维度,其中,仅根据它们的缩放和自相似性属性,可以得出这样的结论,即特定对象(包括分形)不具有整数 Hausdorff dimensions。由于 Abram Samoilovitch Besicovitch 取得的重大技术进步,允许计算高度不规则或“粗糙”集的维度,因此该维度通常也称为 Hausdorff–Besicovitch dimension。

                更具体地说,Hausdorff dimension 是与度量空间相关联的维数,即定义所有成员之间距离的集合。维度是从扩展实数 D 很容易求解,产生图中出现的对数(或自然对数)的比率,并在 Koch 和其他分形情况下给出这些对象的非整数维度。

                Hausdorff dimension 是更简单但通常等效的区域计数维度( box-counting dimension )或 Minkowski–Bouligand dimension 的继承者。

                8.8.1 直观概念

                X
                的维度的直观概念是在内部挑出一个唯一点所需的独立参数的数量。然而,由两个参数指定的任何点都可以由一个参数指定,因为实平面的基数等于实线的基数(这可以从涉及交织两个数字的数字以产生单个参数的参数中看出数字编码相同的信息)。空间填充曲线的例子表明,人们甚至可以将实线满射地映射到实平面(以某种方式将一个实数变成一对实数,以便覆盖所有数对),从而一维对象完全填满了高维对象。

                每条空间填充曲线多次击中某些点并且没有连续的逆。不可能以连续且连续可逆的方式将两个维度映射到一个维度上。拓扑维度,也称为 Lebesgue covering dimension ,解释了原因。这个维度是最大的整数 n = 1 ,某些点必须覆盖两次。

                但是拓扑维度是对空间局部大小(点附近的大小)的非常粗略的度量。几乎充满空间的曲线仍然可以具有拓扑维度 1,即使它填满了一个区域的大部分区域。分形具有整数拓扑维数,但就其占用的空间量而言,它的行为类似于高维空间。

                Hausdorff 维度测量空间的局部大小,同时考虑点之间的距离,度量。考虑完全覆盖 d 是不足以覆盖空间的增长率和过多的增长率之间的临界边界时,它等于 Hausdorff 维度。

                对于光滑的形状,或者具有少量角的形状,传统几何学和科学中的形状,Hausdorff 维数是与拓扑维数一致的整数。但是 Benoit Mandelbrot 观察到分形,具有非整数 Hausdorff 维度的集合,在自然界中随处可见。他观察到,你在周围看到的大多数粗糙形状的正确理想化不是光滑的理想化形状,而是分形理想化形状:

                云不是球体,山脉不是圆锥体,海岸线不是圆圈,树皮不是光滑的,闪电也不是直线传播的。

                对于自然界中出现的分形,Hausdorff 维数和 Box-counting 维数重合。 Packing dimension 是另一个类似的概念,它为许多形状提供相同的值,但有充分记录的例外情况,所有这些维数都不同。

                8.8.2 正式定义

                Hausdorff 维度的正式定义是通过首先定义 Hausdorff measure 得出的,这是 Lebesgue measure 的分数维类似物。首先,构造一个外部度量( outer measure ):令 {\displaystyle H_{\delta }^{d}(S)=\inf \left\{\sum _{i=1}^{\infty }(\operatorname {diam} U_{i})^{d} :\bigcup _{i=1}^{\infty }U_{i}\supseteq S,\operatorname {diam} U_{i}<\delta \right\}} H δ d ​ ( S ) = in f { i = 1 ∑ ∞ ​ ( diam U i ​ ) d : i = 1 ⋃ ∞ ​ U i ​ ⊇ S , diam U i ​ < δ }

                其中,下确界覆盖 {\displaystyle C_{H}^{d}(S):=H_{\infty }^{d}(S)=\inf \left\{\sum _{k=1}^{\infty }(\operatorname {diam} U_{k})^{d}:\bigcup _{k=1}^{\infty }U_{k}\supseteq S\right\}} C H d ​ ( S ) := H ∞ d ​ ( S ) = in f { k = 1 ∑ ∞ ​ ( diam U k ​ ) d : k = 1 ⋃ ∞ ​ U k ​ ⊇ S }

                换句话说, in f ∅ = ∞ 。Hausdorff measure 和 Hausdorff content 都可以用来确定一个集合的维数,但如果集合的测度是非零,它们的实际值可能不一致。

                8.8.3 例子

                ln ( 3 ) / ln ( 2 ) ≈ 1.58 的 Hausdorff 维数。这些 Hausdorff 维度与 Master theorem 的“临界指数”有关,该定理用于在算法分析中求解递推关系。
              • 像 Peano curve 这样的空间填充曲线( space-filling curves )与它们填充的空间具有相同的 Hausdorff 维度;
              • 2 维及以上的布朗运动轨迹被推测为 Hausdorff 维数为 2;
              • Lewis Fry Richardson 进行了详细的实验,以测量各种海岸线的近似 Hausdorff 维数。他的结果从南非海岸线的 1.02 到英国西海岸的 1.25 不等。
              Y in f ​ dim Haus ​ ( Y ) = dim ind ​ ( X )

              其中 Y 在与 X 同胚的度量空间上取值。换句话说,X 和 Y 具有相同的基础点集,并且 Y 的度量 dY 在拓扑上等价于 dX。

              这些结果最初由 Edward Szpilrajn (1907–1976) 建立。

              8.8.4.2 Hausdorff dimension 和 Minkowski dimension

              Minkowski 维数与Hausdorff 维数相似,至少和Hausdorff 维数一样大,并且在许多情况下它们是相等的。然而, [ 0 , 1 ] 中的有理点集的 Hausdorff 维数为零,Minkowski 维数为一。也存在 Minkowski 维数严格大于 Hausdorff 维数的紧集。

              8.8.4.3 Hausdorff dimensions 和 Frostman measures

              如果在度量空间 dim Haus ​ ( X ) ≥ s 。 Frostman’s lemma 的引理提供了部分逆向(partial converse)。

              8.8.4.4 并集(union)和积(product)下的行为
              \dim _{ {\operatorname {Haus}}}(X)=\sup _{ {i\in I}}\dim _{ {\operatorname {Haus}}}(X_{i})
              dim Haus ​ ( X ) = i ∈ I sup ​ dim Haus ​ ( X i ​ )

              这可以直接从定义中验证。

              \dim _{ {\operatorname {Haus}}}(X\times Y)\geq \dim _{ {\operatorname {Haus}}}(X)+\dim _{ {\operatorname {Haus}}}(Y )
              dim Haus ​ ( X × Y ) ≥ dim Haus ​ ( X ) + dim Haus ​ ( Y )

              8.8.5 自相似集(Self-similar sets)

              许多由自相似条件定义的集合具有可以明确确定的维度。粗略地说,如果集合 ψ 的唯一不动点是自相似的。

              9. 从真实世界的数据估计

              许多现实世界的现象表现出有限的或统计的分形特性和分形维数,这些特性和分形维数是使用基于计算机的分形分析技术从采样数据中估计出来的。实际上,分形维数的测量受到各种方法问题的影响,并且对数值或实验噪声和数据量的限制很敏感。尽管如此,该领域正在迅速发展,因为统计自相似现象的估计分形维数可能在天文学、声学、地质学和地球科学、诊断成像等各个领域有许多实际应用,生态学,电化学过程,图像分析,生物学和医学,神经科学,网络分析、生理学、物理学、和黎曼 zeta 零点。分形维数估计也被证明与来自心理声学和神经科学的现实世界数据集中的 Lempel-Ziv complexity 复杂性相关。

              直接测量的替代方法是考虑一个类似于现实世界分形对象形成的数学模型。在这种情况下,还可以通过将模型隐含的分形属性与测量数据进行比较来进行验证。在胶体物理学中,出现了由具有不同分形维数的粒子组成的系统。为了描述这些系统,谈论分形维数的分布很方便,最终,谈论后者的时间演变:一个由聚集( aggregation )和聚结( coalescence )之间复杂的相互作用驱动的过程。

              10. 生成分形的常用技巧

              图 使用 L-systems 原理在计算机中建模的自相似分支模式。


              分形图像可以通过分形生成程序(
              fractal generating programs )创建。由于蝴蝶效应,单个变量的微小变化可能会产生不可预测的结果。

              • 迭代函数系统( Iterated function systems ,IFS)——使用固定的几何替换规则;可能是随机的或确定性的;例如, Koch snowflake 、 Cantor set 、Haferman carpet, Sierpinski carpet 、 Sierpinski gasket 、 Peano curve 、 Harter-Heighway dragon curve 、 T-square 、 Menger sponge
              • 奇异吸引子——使用映射的迭代或显示混沌的初始值微分或差分方程组的解
              • L-systems——使用字符串重写;可能类似于植物、生物细胞(例如神经元和免疫系统细胞)、血管、肺部结构等中的分支模式,或海龟图形模式,例如空间填充曲线和瓷砖
              • 逃逸时间分形(Escape-tme fractals)——在空间中的每个点(例如复平面)使用公式或递归关系;通常是准自相似的;也称为“轨道”分形;例如, Mandelbrot set 、 Julia set 、 Burning Ship fractal 、 Nova fractal 和 Lyapunov fractal 。当点(或像素数据)重复通过该场时,由逃逸时间公式的一次或两次迭代生成的二维矢量场也会产生分形形式。
              • 随机分形——使用随机规则;例如, Lévy flight 、 percolation clusters 、 self avoiding walks 、 fractal landscapes 、布朗运动轨迹和布朗树( Brownian tree )(即通过模拟扩散限制聚集或反应限制聚集簇生成的树枝状分形)。
              • 有限细分规则( Finite subdivision rules )——使用递归拓扑算法细化分块,它们类似于细胞分裂的过程。用于创建 Cantor set 和 Sierpinski carpet 的迭代过程是有限细分规则的示例,重心细分( barycentric subdivision )也是如此。
              图 使用三角形分形创造了山区。


              使用一种随机算法生成分形景观或分形表面,该算法旨在产生分形行为,以模仿自然地形的外观。换句话说,该过程产生的表面不是确定性的,而是表现出分形行为的随机表面。

              许多自然现象表现出某种形式的统计自相似性,可以通过分形表面进行建模。此外,表面纹理的变化为表面的方向和斜率提供了重要的视觉提示,并且使用几乎相似的分形图案可以帮助创造自然的视觉效果。Benoit Mandelbrot 首先提出了通过分数布朗运动对地球粗糙表面的建模。

              由于该过程的预期结果是产生景观,而不是数学功能,因此通常将过程应用于可能影响平稳性甚至这种表面的整体分形行为的这种景观,以产生更具令人信服的景观。

              根据 R. R. Shearer 的说法,自然外观的表面和景观的产生是艺术史上的一个主要转折点,在这里,几何,计算机产生的图像和天然的艺术之间的区别变得模糊。电影《星际迷航II:汗的愤怒》在电影中首次使用分形生成的景观。

              12. 布朗曲面(Brownian surface)

              ( x 2 ​ , y 2 ​ ) 之间的向量距离增加。但是,有许多方法可以定义高程函数。例如,可以使用分数布朗运动变量,或者可以使用各种旋转函数来获得更自然的表面。

              有效生成分数布朗曲面提出了重大挑战。由于布朗曲面表示具有非平稳协方差函数的高斯过程,因此可以使用 Cholesky decomposition 。一种更有效的方法是 Stein method,它使用循环嵌入方法(circulant embedding approach)生成辅助平稳高斯过程(auxiliary stationary Gaussian process),然后调整该辅助过程以获得所需的非平稳高斯过程。下图显示了不同粗糙度或 Hurst 的分数布朗曲面的三种典型实现。Hurst 参数始终介于 0 和 1 之间,值越接近 1,表面越光滑。这些表面是使用 Stein method 的 Matlab 实现生成的。

              图 标准(平凡的(trivial))自相似性。


              在数学中,一个自相似对象与自身的一部分完全或大致相似(即,整体具有与一个或多个部分相同的形状)。现实世界中的许多物体(例如海岸线)在统计上是相似的:它们的一部分在许多尺度上都显示出相同的统计特性。自相似性是分形的典型特性。标度不变性是一种确切的自相似性形式,在任何放大倍数下,都有与整个物体相似的较小物体。例如,Koch snowflake 的一侧既对称又是标度不变。它可以不断地放大 3 倍而不会改变形状。分形中明显的非平凡相似性以其精细结构或任意尺度上的细节而区别。作为反例,而直线的任何部分都可能类似于整体,但没有揭示进一步的细节。

              如果在不同时间,某个可观测量的数值, f ( x , t ) 表现出动态缩放( dynamic scaling )。这个想法只是两个三角形相似性的想法的扩展。请注意,如果其侧面的数值不同,则两个三角形是相似的,但是相应的无量纲数量(例如它们的角度)一致。

              Peitgen 等解释这个概念:

              如果图的一部分是整体的小复制品,则该图被称为自相似。…如果图形可以分解为整体的精确副本,则图是 严格相似的 。任何任意部分都包含整个数字的精确副本。

              比如在研究前图 Koch curve 中,横坐标和纵坐标都需要放大,但是两者放大的倍数不同也会影响最终的相似性,在 Koch curve 中横纵坐标都是按照相同倍数(离散的)放大,此时呈现严格的自相似性,以为每个被放大的细节都可充当原始图像的精确副本。在其他函数曲线中,可能需要横纵坐标放大倍数不同,才能直观看到曲线的自相似性。

              由于在数学上,分形可能在不确定的放大倍率下显示出自相似性,因此不可能在物理上重新创建它。Peitgen等建议使用近似值研究自相似性:

              为了让自相似性的属性具有操作意义,我们必须仅限于处理极限数字的有限近似值。这是使用该方法来完成的,我们将使用这些方法来调用区域自相似性,其中使用各种尺寸的网格在图的有限阶段进行测量。

              该词汇由 Benoit Mandelbrot 于 1964 年引入。

              13.1 自仿射性(Self-affinity)

              12.2 分数布朗曲面的生成

              P
              元素,则可以将 MONOID 表示为 p-adic tree 。

              二元性单类的自态( automorphisms )是模群( modular group )。自同构(automorphisms)可以描述为二叉树(binary tree)的双曲旋转( hyperbolic rotations )。

              比自相似性更一般的概念是自仿射的概念。

              φ
              是一个无量纲的量。

              在任何固定时间,从快照中获得的数据与从任何较早或更晚的快照中获取的数据相似,这些系统中的许多系统以自相似的方式发展。也就是说,该系统在不同的时间与自身相似。这种自相似性的检验测试由动态缩放提供。

              13.3.1 历史

              “动态缩放”一词是描述关键现象动力学的重要概念之一,似乎起源于 Pierre Hohenberg 和 Bertrand Halperin 的 1977 年的开创性论文,即他们建议

              […] that the wave vector- and frequency-dependent susceptibility of a ferromagnet near its Curie point may be expressed as a function independent of x 的典型或平均值通常会随着时间而变化。问题是:相应的无量纲变量会发生什么? 如果维度数量的数值发生变化,但是相应的无量纲数量仍然不变,那么我们可以说系统的快照在不同时间相似。发生这种情况时,我们说系统是自相似的。

              验证动态缩放的一种方法是绘制无量纲变量 f vs x 的图在不同时间重叠到单个通用曲线上,然后在不同时间的系统相似,并且遵守动态缩放。数据重叠的想法深深植根于( Buckingham Pi theorem )。从本质上讲,这种系统可以称为时间自相似性(temporal self-similarity),因为在不同时间相同的系统相似。

              13.3.3 例子

              物理学家研究的许多现象不是静态的,而是随时间概率地进化(即随机过程)。宇宙本身也许是最好的例子之一。自大爆炸以来,它一直在扩展。 同样,诸如互联网之类的网络的增长也在不断增长的系统。另一个例子是聚合物降解,降解不是在眨眼之间发生的,而是在相当长的时间内发生的。生物和计算机病毒的传播也不会在一夜之间发生。

              发现显示出动态缩放的许多其他看似不同的系统。例如:

              • Smoluchowski coagulation equation 描述的聚合动力学;
              • Barabasi -Albert model 描述的复杂网络;
              • 动力学和随机 cantor set ;
              • Kardar -Parisi -Zhang(KPZ)普遍性的增长模型( growth model );人们发现表面的宽度 W ( L , t ) 表现出动态缩放。
              • 加权平面随机晶格( weighted planar stochastic lattice ,WPSL)的区域尺寸分布也表现出动态缩放;
              • 分数泊松过程的边缘概率表现出动态缩放。

              14. L-system

              待完成:[wiki: L-system](https://en.wikipedia.org/wiki/L-system)

              图 L-system trees 形成自然模式的逼真模型。


              L-system 或 Lindenmayer system 是一种并行重写系统(
              parallel rewriting system )和一种形式语法。 L-system 由可用于生成字符串的符号字母表、将每个符号扩展为更大的符号字符串的生成规则集合、开始构造的初始“公理”字符串以及用于将生成的字符串转换为几何结构的机制组成。 L-system 是由乌得勒支大学的匈牙利理论生物学家和植物学家 Aristid Lindenmayer 于 1968 年引入和开发的。Lindenmayer 使用 L-system 来描述植物细胞的行为并模拟植物发育的生长过程。 L-system 也被用于模拟各种生物体的形态,并可用于生成自相似分形。

              14.1 起源

              图 “杂草”,使用 3D L-system 生成。


              作为一名生物学家,Lindenmayer 研究了酵母和丝状真菌,并研究了各种类型细菌的生长模式,例如蓝藻藻类鱼腥藻。 最初,设计 L-system 是为了对这种简单的多细胞生物的发育提供正式描述,并说明植物细胞之间的邻域关系。后来,这个系统被扩展到描述高等植物和复杂的分支结构。

              迭代函数系统(Iterated function system)

              wiki: Iterated function system

              多重分形系统(Multifractal system)

              wiki: Multifractal system

              15. 分形软件

              • Classic Iterated Function Systems_Koch Snowflake

              wiki: Fractal dimension

              wiki: Fractal

              wiki: Self-similarity

              wiki: Dynamic scaling

              wiki:Teragon

              wiki: Fractal-generating software

              wiki: Fractal landscape

              wiki: Brownian surface

              wiki: Hausdorff dimension

              wiki: Hausdorff measure

              wiki: Box counting

              wiki: Lichtenberg figure

              简介:关联 维数 和 分形 维数 是分析数据复杂性和自相似性的关键概念,在IT领域特别是在数据分析和复杂系统研究中具有重要作用。MATLAB提供了强大的工具来计算这些 维数 ,帮助理解系统的复杂性和动态行为。本文将详细介绍关联 维数 和 分形 维数 的计算方法及其在MATLAB中的实现,包括Grassberger-Procaccia算法用于关联 维数 计算、盒计数法和... 分形 (F ract al )2008-08-11 03:47 分形 (F ract al )是指具有自相似特性的现象、图像或者物理过程等。 分形 学诞生于1970年代中期,属于现代数学中的一个分支。 分形 学的创始人是具有法国和美国双重国籍的曼德勃罗,他在1982年出版的《大自然的 分形 几何学》(The F ract al Geometry of Nature)是 分形 学的经典著作。 分形 一般有以下特质: 简介: 分形 维数 是一个数学概念,用于描述复杂几何形状或结构,它超越了传统的欧几里得几何 维度 。MATLAB作为一种强大的数值计算和可视化工具,非常适合于计算 分形 维数 。本文将介绍 F ract al Dim.m 程序,该程序实现了基于盒子计数法等不同方法的 分形 维数 计算。文章详细描述了程序的各个步骤,包括数据预处理、定义网格、计数、构建关系... 在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的 维数 。 分形 理论把 维数 视为分数,这类 维数 是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了 维数 概念,将 维数 从整数扩大到分数,从而突破了一般拓扑集 维数 为整数的界限。<br />分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。将它 分维又叫做 分形 维数 , 是 分形 理论中最重要的一个概念, 它是对非光滑、非规则、破碎的等极其复杂的 分形 客体进行定量刻划的重要参数, 它表征了 分形 体的复杂程度、粗糙程度,即就是分维越大, 客体就越复杂、越粗糙, 反之亦然。 维数 概念历来在数学和物理学中占据着重要的地位。按传统的观点, 维数 是确定系统状态的独立变量, 只能取整数。然而, 在 分形 理论中, 对于一个 分形 客体, 它的 维数 一般都不限于整数, 分形 维的计算方法比较多,虽然准确度各不相同,但结果都大同小异。最近对这方面做了一些了解,并用在图像的特征提取中。现在总结一下。 俺们做磕盐的银,转载也要严谨的注明出处,吴有光20111121写于博客:http://blog.sina.com.cn/wuyouguang 1,盒子法(box-counting)【1】 Gangepain于1986年提出来的。将图像看做三维的曲面,然后计算覆盖的盒子数,即可得到 分形 维数 。 Step 1:对于一幅MxM的图像,看其看做三维空间的... 纹理粗糙度是图像的重要视觉特征,对图像的分析、识别和解释有着重要的意义。人们在纹理分析方面作了大量的研究工作,提出了许多纹理粗糙度的测量和描述方法。 分形 理论指出大多数自然物体表面在空间上都是 分形 的[1],而且这些表面的灰度图像也是 分形 的,这为 分形 模型在图像分析领域的应用提供了理论基础。而纹理粗糙度的描述大多采用 分形 维数 法。 分形 维数 是图像稳定性的表示量,可以用来描述图像表面的粗糙程度。关于 分形 其实是... 分形 的数学基础- 相似 维数 经验 维数 的提出:对于点、线、平面图形、空间图形以及曲线或曲面组成的几何图形的 维数 (欧氏 维数 )分别为0,1,2,3。对于规整几何图形的几何测量是指长度(边长、周长、对角线长)、面积与体积的测量。 所以欧氏几何测量中,可以把这两类图形(分别以正方体和球体作为代表)归纳为如下二点: (1)长度=l, 面积=l2, 体积=l3(正方体) 分形 盒子维纹理特征 在纹理特征的提取中,纹理的 分形 维数 特征(FD)是对纹理的一种重要描述。图像的纹理越复杂、细腻,则 分形 维数 越大。提取 分形 维数 特征的方法有很多种,理论以及计算的复杂度各有差异。 本文中 分形 维数 的计算方法采用的是 DBC(Differenti al Box-counting)即 差分盒子计数法。该方法是由Sarkar and Chaudhuri 于1994年前后提出的(An Efficient Differenti al Box-Counting Approach toCompute ...

              这种不平等可能是严格的。可以找到两个维度为 0 的集合,其乘积的维度为 1。在相反的方向上,已知当 Y 的上堆积维数( upper packing dimension )从上方界定。这些事实在 Mattila 中讨论(1995)。

 
推荐文章
淡定的保温杯  ·  什么是分形| 集智百科| 集智俱乐部
11 月前
淡定的保温杯  ·  分形(Fractal)及分形维数(Fractal dimension)-CSDN博客
11 月前
淡定的保温杯  ·  分形理论在股票市场中的应用:Python实现_分形几何股价-CSDN博客
11 月前
淡定的保温杯  ·  分形空间美服- TapTap
11 月前
飘逸的饭卡  ·  分形_百度百科
1 年前
Link管理   ·   Sov5搜索   ·   小百科
小百科 - 百科知识指南