相关文章推荐
Skip to main content

package.json

The manifest file of a package. It contains all the package's metadata, including dependencies, title, author, et cetera. This is a standard preserved across all major Node.JS package managers, including pnpm.

engines

You can specify the version of Node and pnpm that your software works on:

{
"engines": {
"node": ">=10",
"pnpm": ">=3"
}
}

During local development, pnpm will always fail with an error message if its version does not match the one specified in the engines field.

Unless the user has set the engine-strict config flag (see .npmrc ), this field is advisory only and will only produce warnings when your package is installed as a dependency.

dependenciesMeta

Additional meta information used for dependencies declared inside dependencies , optionalDependencies , and devDependencies .

dependenciesMeta.*.injected

If this is set to true for a local dependency, the package will be hard linked to the modules directory, not symlinked.

For instance, the following package.json in a workspace will create a symlink to button in the node_modules directory of card :

{
"name": "card",
"dependencies": {
"button": "workspace:1.0.0"
}
}

But what if button has react in its peer dependencies? If all projects in the monorepo use the same version of react , then no problem. But what if button is required by card that uses react@16 and form with react@17 ? Without using inject , you'd have to choose a single version of react and install it as dev dependency of button . But using the injected field you can inject button to a package, and button will be installed with the react version of that package.

So this will be the package.json of card :

{
"name": "card",
"dependencies": {
"button": "workspace:1.0.0",
"react": "16"
},
"dependenciesMeta": {
"button": {
"injected": true
}
}
}

button will be hard linked into the dependencies of card , and react@16 will be symlinked to the dependencies of card/node_modules/button .

And this will be the package.json of form :

{
"name": "form",
"dependencies": {
"button": "workspace:1.0.0",
"react": "17"
},
"dependenciesMeta": {
"button": {
"injected": true
}
}
}

button will be hard linked into the dependencies of form , and react@17 will be symlinked to the dependencies of form/node_modules/button .

In contrast to normal dependencies, injected ones are not symlinked to the destination folder, so they are not updated automatically, e.g. after running the build script. To update the hard linked folder contents to the latest state of the dependency package folder, call pnpm i again.

Note that the button package must have any lifecycle script that runs on install in order for pnpm to detect the changes and update it. For example, the package can be rebuilt on install: "prepare": "pnpm run build" . Any script would work, even a simple unrelated command without side effects, like this: "prepare": "pnpm root" .

peerDependenciesMeta

This field lists some extra information related to the dependencies listed in the peerDependencies field.

peerDependenciesMeta.*.optional

If this is set to true, the selected peer dependency will be marked as optional by the package manager. Therefore, the consumer omitting it will no longer be reported as an error.

For example:

{
"peerDependencies": {
"foo": "1"
},
"peerDependenciesMeta": {
"foo": {
"optional": true
},
"bar": {
"optional": true
}
}
}

Note that even though bar was not specified in peerDependencies , it is marked as optional. pnpm will therefore assume that any version of bar is fine. However, foo is optional, but only to the required version specification.

publishConfig

It is possible to override some fields in the manifest before the package is packed. The following fields may be overridden:

To override a field, add the publish version of the field to publishConfig .

For instance, the following package.json :

{
"name": "foo",
"version": "1.0.0",
"main": "src/index.ts",
"publishConfig": {
"main": "lib/index.js",
"typings": "lib/index.d.ts"
}
}

Will be published as:

{
"name": "foo",
"version": "1.0.0",
"main": "lib/index.js",
"typings": "lib/index.d.ts"
}

publishConfig.executableFiles

By default, for portability reasons, no files except those listed in the bin field will be marked as executable in the resulting package archive. The executableFiles field lets you declare additional fields that must have the executable flag (+x) set even if they aren't directly accessible through the bin field.

{
"publishConfig": {
"executableFiles": [
"./dist/shim.js"
]
}
}

publishConfig.directory

You also can use the field publishConfig.directory to customize the published subdirectory relative to the current package.json .

It is expected to have a modified version of the current package in the specified directory (usually using third party build tools).

In this example the "dist" folder must contain a package.json

{
"name": "foo",
"version": "1.0.0",
"publishConfig": {
"directory": "dist"
}
}

publishConfig.linkDirectory

  • Default: true
  • Type: Boolean

When set to true , the project will be symlinked from the publishConfig.directory location during local development.

For example:

{
"name": "foo",
"version": "1.0.0",
"publishConfig": {
"directory": "dist"
"linkDirectory": true
}
}

pnpm.overrides

This field allows you to instruct pnpm to override any dependency in the dependency graph. This is useful to enforce all your packages to use a single version of a dependency, backport a fix, or replace a dependency with a fork.

Note that the overrides field can only be set at the root of the project.

An example of the "pnpm"."overrides" field:

{
"pnpm": {
"overrides": {
"foo": "^1.0.0",
"quux": "npm:@myorg/quux@^1.0.0",
"bar@^2.1.0": "3.0.0",
"qar@1>zoo": "2"
}
}
}

You may specify the package the overriden dependency belongs to by separating the package selector from the dependency selector with a ">", for example qar@1>zoo will only override the zoo dependency of qar@1 , not for any other dependencies.

An override may be defined as a reference to a direct dependency's spec. This is achieved by prefixing the name of the dependency with a $ :

{
"dependencies": {
"foo": "^1.0.0"
},
"pnpm": {
"overrides": {
"foo": "$foo"
}
}
}

The referenced package does not need to match the overridden one:

{
"dependencies": {
"foo": "^1.0.0"
},
"pnpm": {
"overrides": {
"bar": "$foo"
}
}
}

pnpm.packageExtensions

The packageExtensions fields offer a way to extend the existing package definitions with additional information. For example, if react-redux should have react-dom in its peerDependencies but it has not, it is possible to patch react-redux using packageExtensions :

{
"pnpm": {
"packageExtensions": {
"react-redux": {
"peerDependencies": {
"react-dom": "*"
}
}
}
}
}

The keys in packageExtensions are package names or package names and semver ranges, so it is possible to patch only some versions of a package:

{
"pnpm": {
"packageExtensions": {
"react-redux@1": {
"peerDependencies": {
"react-dom": "*"
}
}
}
}
}

The following fields may be extended using packageExtensions : dependencies , optionalDependencies , peerDependencies , and peerDependenciesMeta .

A bigger example:

{
"pnpm": {
"packageExtensions": {
"express@1": {
"optionalDependencies": {
"typescript": "2"
}
},
"fork-ts-checker-webpack-plugin": {
"dependencies": {
"@babel/core": "1"
},
"peerDependencies": {
"eslint": ">= 6"
},
"peerDependenciesMeta": {
"eslint": {
"optional": true
}
}
}
}
}
}
tip

Together with Yarn, we maintain a database of packageExtensions to patch broken packages in the ecosystem.

 
推荐文章