邱雅惠, 刘健, 刘斌, 宁亮, 严蜜. 全新世北半球典型冷事件的模拟研究[J]. 第四纪研究, 2019, 39(4): 1055-1067. doi: 10.11928/j.issn.1001-7410.2019.04.23
引用本文: 邱雅惠, 刘健, 刘斌, 宁亮, 严蜜. 全新世北半球典型冷事件的模拟研究[J]. 第四纪研究, 2019, 39(4): 1055-1067. doi: 10.11928/j.issn.1001-7410.2019.04.23 邱雅惠, 刘健, 刘斌, 宁亮, 严蜜. 全新世北半球典型冷事件的模拟研究[J]. 第四纪研究, 2019, 39(4): 1055-1067. doi: 10.11928/j.issn.1001-7410.2019.04.23 Qiu Yahui, Liu Jian, Liu Bin, Ning Liang, Yan Mi. Characteristics of Holocene cold events in the Northern Hemisphere from the TraCE-21 ka model simulation[J]. Quaternary Sciences, 2019, 39(4): 1055-1067. doi: 10.11928/j.issn.1001-7410.2019.04.23 Citation: Qiu Yahui, Liu Jian, Liu Bin, Ning Liang, Yan Mi. Characteristics of Holocene cold events in the Northern Hemisphere from the TraCE-21 ka model simulation[J]. Quaternary Sciences , 2019, 39(4): 1055-1067. doi: 10.11928/j.issn.1001-7410.2019.04.23

Key Laboratory for Virtual Geographic Environment of Ministry of Education, State Key Laboratory of Geographical Evolution of Jiangsu Provincial Cultivation Base, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing 210023, Jiangsu

Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems/School of Mathematical Science, Nanjing Normal University, Nanjing 210023, Jiangsu

Open Studio for the Simulation of Ocean-Climate-Isotope, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong

State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, Shaanxi

全新世冷事件期间的气候格局及其成因是过去气候变化研究的热点问题。利用基于通用气候系统模式开展的TraCE-21ka气候模拟试验资料,在定义和提取典型冷事件的基础上,分析了全强迫试验模拟的全新世北半球多次冷事件的规模及冷事件发生时温度与降水的空间特征,并结合全强迫试验中使用的4个外强迫序列(淡水注入、轨道强迫、大气温室气体、大陆冰盖)及其对应的单因子敏感性试验,初步探讨了部分典型冷事件的成因。结果表明:TraCE-21ka模拟的冷事件年份与重建/集成序列的冷事件年份对应较好,模式较好地模拟出了全新世北半球的冷事件;全新世期间,北半球共发生了10次典型冷事件(9.7 ka B. P.、8.3 ka B. P.、7.3 ka B. P.、6.2 ka B. P.、5.2 ka B. P.、4.2 ka B. P.、3.4 ka B. P.、2.1 ka B. P.、1.0 ka B. P.和0.2 ka B. P.);每次冷事件发生时,北半球大范围降温和变干,温度变化呈现明显的纬度地带性差异,中高纬地区降温最显著,低纬10°N附近降水减少最显著;在8.3 ka B. P.、7.3 ka B. P.、6.2 ka B. P.、5.2 ka B. P.、4.2 ka B. P.、3.4 ka B. P.、2.1 ka B. P.和1.0 ka B. P.共8次冷事件中,北半球温度和降水的空间变化较为相似,北大西洋经圈翻转流(Atlantic Meridional Overturning Circulation,简称AMOC)变弱导致了冷事件,格陵兰岛南部的北大西洋海域降温和变干尤为显著;9.7 ka B. P.和3.4 ka B. P.的冷事件可能与轨道强迫有关,淡水注入造成了8.3 ka B. P.和7.3 ka B. P.的冷事件,0.2 ka B. P.冷事件可能与大气温室气体波动有关。地球系统内部变率对于冷事件的发生可能也有一定影响。

The climate pattern and cause during the Holocene cold event periods is a hot issue in past climate change research. Transient Climate Evolution of the last 21000 years simulated by the CCSM 3 is used to define and choose the typical cold events in all forcing experiment in the Northern Hemisphere during the Holocene. Magnitudes and the spatial characteristics of temperature and precipitation anomalies in each typical cold event are analyzed. By comparing four external forcings (Orbital Forcing, Atmospheric Greenhouse Gases, Ice Sheets and Paleogeography and Meltwater Forcing) used in all forcing simulation and corresponding 4 single forcing sensitive experiments, causes of cold events are also discussed. The results show that the cold events simulated by TraCE-21ka match well with those found in reconstructions or integrated temperature data sets, TraCE-21ka can reproduce the cold events during Holocene properly. During the Holocene, 10 typical cold events occurred at 9.7 ka B. P., 8.3 ka B. P., 7.3 ka B. P., 6.2 ka B. P., 5.2 ka B. P., 4.2 ka B. P., 3.4 ka B. P., 2.1 ka B. P., 1.0 ka B. P. and 0.2 ka B. P. in the Northern Hemisphere in simulation. Holocene cold event periods are characterized by temperature decrease and precipitation reduction over the Northern Hemisphere, and the temperature decreases significantly in the middle and high latitudes of the Northern Hemisphere while precipitation reduces most around 10°N, the temperature shows distinct latitude-belt distribution characteristics. The spatial characteristics of temperature and precipitation are similar in 8 events from 8.3 ka B. P. to 1.0 ka B. P., with significant decrease in temperature and precipitation from North Atlantic Ocean to the south of Greenland. Cold events at 9.7 ka B. P. and 3.4 ka B. P. may be related to the orbital forcing, Meltwater Forcing caused cold events at 8.3 ka B. P. and 7.3 ka B. P., and cold events at 0.2 ka B. P. may be related to the Atmospheric Greenhouse Gases. The internal variability of the climate system may have some effect on cold events.

Holocene cold events climate simulation temperature cause 方修琦, 葛全胜, 郑景云.全新世寒冷事件与气候变化的千年周期[J].自然科学进展, 2004, 14(4):456-461. doi: 10.3321/j.issn:1002-008X.2004.04.015 Fang Xiuqi, Ge Quansheng, Zheng Jingyun. Holocene cold events and the millennial cycle of climate change[J]. Progress in Natural Science, 2004, 14(4):456-461. doi: 10.3321/j.issn:1002-008X.2004.04.015 王绍武.全新世北大西洋冷事件:年代学和气候影响[J].第四纪研究, 2009, 29(6):1146-1153. http://www.dsjyj.com.cn/CN/abstract/abstract8484.shtml Wang Shaowu. Holocene cold events in the North Atlantic chronology and climatic impact[J]. Quaternary Sciences, 2009, 29(6):1146-1153. http://www.dsjyj.com.cn/CN/abstract/abstract8484.shtml 韩春凤, 刘健, 王志远.过去2000年亚洲夏季风降水百年尺度变化及其区域差异的模拟分析[J].第四纪研究, 2016, 36(3):732-746. http://www.dsjyj.com.cn/CN/abstract/abstract11211.shtml Han Chunfeng, Liu Jian, Wang Zhiyuan. Simulated analysis of Asian summer monsoon precipitation on centennial time scale and its regional differences over the past 2000 years[J]. Quaternary Sciences, 2016, 36(3):732-746. http://www.dsjyj.com.cn/CN/abstract/abstract11211.shtml 焦腾腾, 李佳瑞, 陈婕, 等.全新世北大西洋海面温度变化趋势:观测-模拟对比研究[J].第四纪研究, 2016, 36(3):747-757. http://www.dsjyj.com.cn/CN/abstract/abstract11212.shtml Jiao Tengteng, Li Jiarui, Chen Jie, et al. Changing trends of sea surface temperatures in the North Atlantic during the Holocene:A study of model-data comparison[J]. Quaternary Sciences, 2016, 36(3):747-757. http://www.dsjyj.com.cn/CN/abstract/abstract11212.shtml 韩春凤, 刘健, 王志远.通用地球系统模式对亚洲夏季风降水的模拟能力评估[J].气象科学, 2017, 37(2):151-160. http://d.old.wanfangdata.com.cn/Periodical/qxkx201702002 Han Chunfeng, Liu Jian, Wang Zhiyuan. Evaluation of community earth system model in simulating Asian summer monsoon precipitation[J]. Journal of the Meteorological Sciences, 2017, 37(2):151-160. http://d.old.wanfangdata.com.cn/Periodical/qxkx201702002 姜大膀, 田芝平.末次冰盛期和全新世中期东亚地区水汽输送的模拟研究[J].第四纪研究, 2017, 37(5):999-1008. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201705007 Jiang Dabang, Tian Zhiping. Last Glacial Maximum and mid-Holocene water vapor transport over East Asia:A modeling study[J]. Quaternary Sciences, 2017, 37(5):999-1008. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201705007 燕青, 张仲石, 张冉, 等.过去千年北大西洋热带气旋生成潜势的模拟研究:基于PMIP3气候模式[J].第四纪研究, 2017, 37(5):1141-1150. http://www.dsjyj.com.cn/CN/abstract/abstract11394.shtml Yan Qing, Zhang Zhongshi, Zhang Ran, et al. Simulation of tropical cyclone genesis potential over the North Atlantic in the last millennium based on PMIP 3 models[J]. Quaternary Sciences, 2017, 37(5):1141-1150. http://www.dsjyj.com.cn/CN/abstract/abstract11394.shtml 靳立亚, 陈发虎.千百年尺度气候快速变化及其数值模拟研究进展[J].地球科学进展, 2007, 22(10):1054-1065. doi: 10.3321/j.issn:1001-8166.2007.10.010 Jin Liya, Chen Fahu. Progress in rapid climate changes and their modeling study in millennial-and centennial scales[J]. Advances in Earth Science, 2007, 22(10):1054-1065. doi: 10.3321/j.issn:1001-8166.2007.10.010 Manabe S, Stouffer R J. Study of abrupt climate change by a coupled ocean-atmosphere model[J]. Quaternary Science Reviews, 2000, 19(1):285-299. http://cn.bing.com/academic/profile?id=d945232c260262a8da11159e596990c9&encoded=0&v=paper_preview&mkt=zh-cn Goosse H, Renssen H, Selten F M, et al. Potential causes of abrupt climate events:A numerical study with a three-dimensional climate model[J]. Geophysical Research Letters, 2002, 29(18):1-7. http://cn.bing.com/academic/profile?id=2fd52d28ba65041e49ebc0e3f2260eb7&encoded=0&v=paper_preview&mkt=zh-cn Renssen H, Goosse H, Fichefet T. Modeling the effect of freshwater pulses on the Early Holocene climate:The influence of high-frequency climate variability[J]. Paleoceanography, 2002, 17(2):10-11. http://cn.bing.com/academic/profile?id=918bdc60e799c2aedd6fe983c3ff51ed&encoded=0&v=paper_preview&mkt=zh-cn Morrill C, Wagner A J, Otto-Bliesner B L, et al. Evidence for significant climate impacts in monsoonal Asia at 8.2 ka from multiple proxies and model simulations[J]. Journal of Earth Environment, 2011, 2(3):426-441. http://cn.bing.com/academic/profile?id=6d972bc52ca66548b870c8ed6b88032e&encoded=0&v=paper_preview&mkt=zh-cn 徐韵, 陈星.基于中等复杂地球系统模式的全新世气候突变事件模拟试验[J].第四纪研究, 2007, 27(3):392-400. doi: 10.3321/j.issn:1001-7410.2007.03.011 http://www.dsjyj.com.cn/CN/abstract/abstract8749.shtml Xu Yun, Chen Xing. Simulation of abrupt climate events in Holocene with an earth-system model of intermediate complexity[J]. Quaternary Sciences, 2007, 27(3):392-400. doi: 10.3321/j.issn:1001-7410.2007.03.011 http://www.dsjyj.com.cn/CN/abstract/abstract8749.shtml 吴海斌, 李琴, 于严严, 等.全新世中期中国气候格局定量重建[J].第四纪研究, 2017, 37(5):982-998. http://www.dsjyj.com.cn/CN/abstract/abstract11379.shtml Wu Haibin, Li Qin, Yu Yanyan, et al. Quantitative climate reconstruction in China during the mid-Holocene[J]. Quaternary Sciences, 2017, 37(5):982-998. http://www.dsjyj.com.cn/CN/abstract/abstract11379.shtml 侯光良, 方修琦.中国全新世气温变化特征[J].地理科学进展, 2011, 30(9):1075-1080. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201202012.htm Hou Guangliang, Fang Xiuqi. Characteristics of Holocene temperature change in China[J]. Progress in Geography, 2011, 30(9):1075-1080. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201202012.htm Alley R B. The Younger Dryas cold interval as viewed from central Greenland[J]. Quaternary Science Reviews, 2000, 19(1):213-226. http://cn.bing.com/academic/profile?id=9fd088affac3606eb2a3042d6de9dcf4&encoded=0&v=paper_preview&mkt=zh-cn Larocque I, Hall R I. Holocene temperature estimates and Chironomid community composition in the Abisko Valley, Northern Sweden[J]. Quaternary Science Reviews, 2004, 23(23):2453-2465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43575b11ee46ce99c017e9d3e1176c13 Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene Series/Epoch:A discussion paper by a working group of INTIMATE(Integration of ice-core, marine and terrestrial records)and the subcommission on Quaternary stratigraphy(International Commission on Stratigraphy)[J]. Journal of Quaternary Science, 2012, 27(7):649-659. doi: 10.1002/jqs.v27.7 Soon W, Baliunas S, Idso C, et al. Reconstructing climatic and environmental changes of the past 1000 years:A reappraisal[J]. Energy & Environment, 2003, 14(2-3):233-296. http://cn.bing.com/academic/profile?id=377ceb944a6b70a36399b3f9c25a5578&encoded=0&v=paper_preview&mkt=zh-cn 李亮, 马春梅, 鹿化煜, 等.江西中部玉华山沼泽泥炭记录的过去两千年气候变化初步研究[J].第四纪研究, 2017, 37(3):548-559. http://www.dsjyj.com.cn/CN/abstract/abstract11334.shtml Li Liang, Ma Chunmei, Lu Huayu, et al. A preliminary study of the climate change since 2 ka archived by a peat core from Yuhua Mountain in the middle Jiangxi Province[J]. Quaternary Sciences, 2017, 37(3):548-559. http://www.dsjyj.com.cn/CN/abstract/abstract11334.shtml 李康康, 秦小光, 张磊, 等.罗布泊(楼兰)地区1260-1450 A.D.期间的绿洲环境和人类活动[J].第四纪研究, 2018, 38(3):720-731. http://www.dsjyj.com.cn/CN/abstract/abstract11490.shtml Li Kangkang, Qin Xiaoguang, Zhang Lei, et al. The ancient oasis and human activity in Lop Nur(Loulan)region during 1260-1450 A.D.[J]. Quaternary Sciences, 2018, 38(3):720-731. http://www.dsjyj.com.cn/CN/abstract/abstract11490.shtml Jones P D, Mann M E. Climate over past millennia[J]. Reviews of Geophysics, 2004, 42(2):1-42. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0222143889/ 严蜜, 王志远, 刘健.中国过去1500年典型暖期气候的模拟研究[J].第四纪研究, 2014, 34(6):1166-1175. http://www.dsjyj.com.cn/CN/abstract/abstract10964.shtml Yan Mi, Wang Zhiyuan, Liu Jian. Simulation of the characteristics and mechanisms of Chinese typical warm periods over the past 1500 years[J]. Quaternary Sciences, 2014, 34(6):1166-1175. http://www.dsjyj.com.cn/CN/abstract/abstract10964.shtml 靳春寒, 刘健, 王志远.中国中世纪暖期温度年代际变化特征及成因分析[J].第四纪研究, 2016, 36(4):970-982. http://www.dsjyj.com.cn/CN/abstract/abstract11233.shtml Jin Chunhan, Liu Jian, Wang Zhiyuan. Study on the characteristics and causes of interdecadal temperature changes in China during the MWP[J]. Quaternary Sciences, 2016, 36(4):970-982. http://www.dsjyj.com.cn/CN/abstract/abstract11233.shtml 刘斌, 刘健, 王志远.中世纪暖期南北半球气候变化特征与成因的模拟对比[J].地理研究, 2016, 35(9):1659-1671. http://d.old.wanfangdata.com.cn/Periodical/dlyj201609006 Liu Bin, Liu Jian, Wang Zhiyuan. Inter-hemispheric comparison of characteristics and causes of climate change during the Medieval Warm Period based on CESM simulation[J]. Geographical Research, 2016, 35(9):1659-1671. http://d.old.wanfangdata.com.cn/Periodical/dlyj201609006 牛蕊, 周立旻, 孟庆浩, 等.贵州草海南屯泥炭记录的中全新世以来的气候变化[J].第四纪研究, 2017, 37(6):1357-1369. http://www.dsjyj.com.cn/CN/abstract/abstract11414.shtml Niu Rui, Zhou Limin, Meng Qinghao, et al. The paleoclimate variations of the Nantun peat in the Caohai area since the Middle Holocene[J]. Quaternary Sciences, 2017, 37(6):1357-1369. http://www.dsjyj.com.cn/CN/abstract/abstract11414.shtml Figure 2.

Holocene cold events in the Northern Hemisphere from reconstructions, integrated datasets and simulation

Figure 3.

Scale of Holocene cold events(blue lines)and year of cold events in the Northern Hemisphere from TraCE-21ka simulation(dark gray vertical lines)

Figure 4.

Total amount of simulated cold events during Holocene (a) in the Northern Hemisphere and its (b) zonal mean, (c)meridional mean(unit: times)

Figure 5.

The changes of temperature between 10 cold event periods and non-cold event periods(cold event period minus non-cold event period)

Figure 6.

The changes of precipitation between 10 cold event periods and non-cold event periods(cold event period minus non-cold event period)

Figure 7.

Ensemble changes of temperature (a, unit: ℃) and precipitation (b, unit: mm/day) between all cold event periods and non-cold event periods in the first 9 cold events(cold event period minus non-cold event period)

Figure 8.

AMOC Index from 5 experiments in TraCE-21ka simulation