控制是航天器在空间环境下自主完成复杂任务的关键技术. 首先梳理了中国空间控制技术过去50多年来的发展成果, 总结划分为航天器姿态控制、姿态轨道控制、“感知−决策−执行” (Perception-decision-action, PDA)自主控制三个方面, 并在综述了各方面主要进展的基础上, 围绕超大结构航天器姿态轨道控制、轨道空间博弈控制、网络化航天器集群控制、地外探测智能无人系统控制、跨域航天器自主控制、在轨建造与维护(On-orbit servicing, assembly, and manufacturing, OSAM)控制6个技术方向, 提出面临的挑战和需要重点关注的基础性问题, 为空间控制技术未来的发展提供借鉴和参考. 智能机器人在服务国家重大需求, 引领国民经济发展和保障国防安全中起到重要作用, 被誉为“制造业皇冠顶端的明珠”. 随着新一轮工业革命的到来, 世界主要工业国家都开始加快机器人技术的战略部署. 而智能机器人作为智能制造的重要载体, 在深入实施制造强国战略, 推动制造业的高端化、智能化、绿色化过程中将发挥重要作用. 本文从智能机器人的感知与控制等关键技术的视角出发, 重点阐述了机器人的三维环境感知、点云配准、位姿估计、任务规划、多机协同、柔顺控制、视觉伺服等共性关键技术的国内外发展现状. 然后, 以复杂曲面机器人三维测量、复杂部件机器人打磨、机器人力控智装配等机器人智能制造系统为例, 阐述了机器人的智能制造的应用关键技术, 并介绍了工程机械智能化无人工厂、无菌化机器人制药生产线等典型案例. 最后探讨了智能制造机器人的发展趋势和所面临的挑战. 我国流程行业原料来源复杂, 如何优化调控工艺指标使复杂生产流程适应原料波动, 是保障产品质量、降低物耗能耗的关键. 本文结合全流程、工序、反应器等不同生产层级的工艺特点, 系统研究复杂生产流程协同优化和智能控制方法. 针对全流程多工序关联的特点, 提出了操作模式优化方法和操作模式动态匹配的全流程多工序协同优化方法; 针对单元工序多反应器级联的特点, 分析了工序内不同反应器的物质转化效率差异, 提出了反应器指标梯度协同优化方法; 针对反应器多反应共存、工况多变的特点, 研究了基于完备状态空间的动态特性描述框架, 建立了竞争−促进反应体系机理模型, 提出了工况全覆盖的模型参数自主辨识方法和基于分工况智能综合调节的反应器操作参数精细化调控方法. 通过锌冶炼智能工厂建设案例阐述了所提方法在提高工艺原料适应能力、生产效率、质量稳定性等方面的成效. 最后, 结合我国流程行业智能化发展现状和需求, 分析了需进一步研究的问题. 城市固废焚烧(Municipal solid waste incineration, MSWI)是处置城市固废(Municipal solid waste, MSW) 的主要手段之一. 中国MSW来源范围广、组分复杂、热值波动大, 其焚烧过程通常依靠人工干预, 这导致MSWI过程智能化水平较低且难以满足日益提升的控制需求. MSWI具有多变量耦合、工况漂移等诸多不确定性特征, 因而难以建立其被控对象模型并设计在线控制器. 针对以上问题, 提出了一种面向MSWI过程的数据驱动建模与自组织控制方法. 首先, 构建了基于多输入多输出Takagi Sugeno 模糊神经网络(Multi-input multi-output Takagi Sugeno fuzzy neural network, MIMO-TSFNN) 的被控对象模型; 然后, 设计了基于多任务学习的自组织模糊神经网络控制器(Multi-task learning self-organizing fuzzy neural network controller, MTL-SOFNNC)用于同步控制炉膛温度与烟气含氧量, 其通过计算神经元的相似度与多任务学习(Multi-task learning, MTL)能力对控制器结构进行自组织调整; 接着, 通过Lyapunov定理对MTL-SOFNNC稳定性进行了证明; 最后, 通过北京市某MSWI厂的过程数据验证了模型与控制器的有效性. 近年来, 人工智能(Artificial intelligence, AI)技术在棋牌游戏、计算机视觉、自然语言处理和蛋白质结构解析与预测等研究领域取得了众多突破性进展, 传统学科之间的固有壁垒正在被逐步打破, 多学科深度交叉融合的态势变得越发明显. 作为现代智能科学的三个重要组成部分, 博弈论、多智能体学习与控制论自诞生之初就逐渐展现出一种“你中有我, 我中有你” 的关联关系. 特别地, 近年来在AI技术的促进作用下, 这三者间的交叉研究成果正呈现出一种井喷式增长的态势. 为及时反映这一学术动态和趋势, 本文对这三者的异同、联系以及最新的研究进展进行了系统梳理. 首先, 介绍了作为纽带连接这三者的四种基本博弈形式, 进而论述了对应于这四种基本博弈形式的多智能体学习方法; 然后, 按照不同的专题, 梳理了这三者交叉研究的最新进展; 最后, 对这一新兴交叉研究领域进行了总结与展望. 社会物理信息系统 (Cyber-physical-social systems, CPSS)在传统物理信息系统 (Cyber-physical systems, CPS)的基础上纳入对社会信号及社会关系的考虑, 利用网络世界近乎无限的人力、数据和信息资源, 突破物理世界有限的资源约束以及时空的限制. 然而, CPSS中人类和社会行为的复杂性加剧了实际系统和其模型之间的建模鸿沟, 使得系统的形态演变为“默顿系统”. 对此, 以ACP方法为核心的平行智能 (Parallel intelligence, PI) 框架通过组合人工系统 (Artificial systems, A)、计算实验 (Computational experiments, C)、平行执行 (Parallel execution, P)三个过程, 为跨越这一鸿沟提供了可行的路径. 具体而言, ACP将模型从系统解析器转变为数据生成器, 使原本难以控制的“默顿系统”可测试、可计算、可验证, 为复杂系统中“涌现”和“收敛”的对立统一确立了方法基础. 本文从平行控制与智能控制、平行机器人与平行制造、平行管理与智能交通、平行医学与智慧健康、平行生态与平行社会、平行经济系统与社会计算、平行军事系统以及平行认知与平行哲学这八个方面阐述面向CPSS的平行智能应用成果. 最后, 对CPSS未来的发展方向和技术趋势进行了讨论与展望. 机器学习技术成功地应用于计算机视觉、自然语言处理和语音识别等众多领域. 然而, 现有的大多数机器学习模型在部署后类别和参数是固定的, 只能泛化到训练集中出现的类别, 无法增量式地学习新类别. 在实际应用中, 新的类别或任务会源源不断地出现, 这要求模型能够像人类一样在较好地保持已有类别知识的基础上持续地学习新类别知识. 近年来新兴的类别增量学习研究方向, 旨在使得模型能够在开放、动态的环境中持续学习新类别的同时保持对旧类别的判别能力(防止“灾难性遗忘”). 本文对类别增量学习(Class-incremental learning, CIL)方法进行了详细综述. 根据克服遗忘的技术思路, 将现有方法分为基于参数正则化、基于知识蒸馏、基于数据回放、基于特征回放和基于网络结构的五类方法, 对每类方法的优缺点进行了总结. 此外, 本文在常用数据集上对代表性方法进行了实验评估, 并通过实验结果对现有算法的性能进行了比较分析. 最后, 对类别增量学习的研究趋势进行展望. 基于因果建模的强化学习技术在智能控制领域越来越受欢迎. 因果技术可以挖掘控制系统中的结构性因果知识, 并提供了一个可解释的框架, 允许人为对系统进行干预并对反馈进行分析. 量化干预的效果使智能体能够在复杂的情况下 (例如存在混杂因子或非平稳环境) 评估策略的性能, 提升算法的泛化性. 本文旨在探讨基于因果建模的强化学习控制技术 (以下简称因果强化学习) 的最新进展, 阐明其与控制系统各个模块的联系. 首先介绍了强化学习的基本概念和经典算法, 并讨论强化学习算法在变量因果关系解释和迁移场景下策略泛化性方面存在的缺陷. 其次, 回顾了因果理论的研究方向, 主要包括因果效应估计和因果关系发现, 这些内容为解决强化学习的缺陷提供了可行方案. 接下来, 阐释了如何利用因果理论改善强化学习系统的控制与决策, 总结了因果强化学习的四类研究方向及进展, 并整理了实际应用场景. 最后, 对全文进行总结, 指出了因果强化学习的缺点和待解决问题, 并展望了未来的研究方向. 离线强化学习通过减小分布偏移实现了习得策略向行为策略的逼近, 但离线经验缓存的数据分布往往会直接影响习得策略的质量. 通过优化采样模型来改善强化学习智能体的训练效果, 提出两种离线优先采样模型: 基于时序差分误差的采样模型和基于鞅的采样模型. 基于时序差分误差的采样模型可以使智能体更多地学习值估计不准确的经验数据, 通过估计更准确的值函数来应对可能出现的分布外状态. 基于鞅的采样模型可以使智能体更多地学习对策略优化有利的正样本, 减少负样本对值函数迭代的影响. 进一步, 将所提离线优先经验采样模型分别与批约束深度Q学习(BCQ)相结合, 提出基于时序差分误差的优先BCQ和基于鞅的优先BCQ. D4RL和Torcs数据集上的实验结果表明: 所提离线优先采样模型可以有针对性地选择有利于值函数估计或策略优化的经验数据, 获得更高的回报. 现有的从图像序列中检测和跟踪低信噪比、时变数量多目标的方法, 将多目标视为一个整体. 因此, 随着目标数量的增加, 会出现算法结构复杂、计算量增大、性能下降等问题. 针对上述问题, 提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRFB-MTBD)算法, 将多目标跟踪问题转换为序贯地检测和估计多个单目标的问题. 首先, 采用代价参考粒子滤波器(Cost-reference particle filter, CRPFB)组序贯地估计所有可能单目标状态序列; 其次, 基于欧氏距离合并或删减多个单目标状态, 确定目标数量; 最后, 根据累积代价判断每个目标出现和消失的具体时刻. 仿真实验验证了CRPFB-MTBD在信噪比低至6dB时的优良性能, 与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-beofre-detect, PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect, Bernoulli-TBD)相比, CRPFB-MTBD的目标状态和数量估计结果最佳, 且平均单次运行时间极短. 针对随机权神经网络(Random weight neural networks, RWNNs)隐含层节点随机生成过程可解释性不足和节点随机生成而导致的网络结构不紧致等问题, 提出了一种空间几何角度最大化随机增量学习模型(Stochastic incremental learning model with maximizing spatial geometry angle, SGA-SIM). 首先, 以空间几何视角深入分析随机增量学习过程, 建立了具有可解释性的空间几何角度最大化约束, 以改善隐含层节点质量, 并证明该学习模型具有无限逼近特性; 同时, 引入格雷维尔迭代法优化学习模型输出权值计算方法, 提高模型学习效率. 在真实的分类和回归数据集以及数值模拟实例上的实验结果表明, 所提增量学习模型在建模速度、模型精度和模型网络结构等多个方面具有明显优势. 铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂, 但无法实时在线检测, 造成铁水质量调控盲目. 为此, 提出一种基于动态注意力深度迁移网络(Attention deep transfer network, ADTNet)的高炉铁水硅含量在线预测方法. 首先, 针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系, 提出一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法; 其次, 为降低硅含量预测模型训练时对标签数据的依赖, 考虑到铁水温度与硅含量数据之间的正相关性, 利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构, 进而提高基于动态注意力深度迁移网络的硅含量预测精度; 同时, 为增强预测网络的可解释性, 实时给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度; 最后, 基于某钢铁厂2号高炉的工业实验, 验证了该方法的准确性、有效性和先进性. 针对工业过程运行指标反馈校正存在滞后及一步推理校正模型可解释性差的问题, 提出了基于递归注意力生成对抗网络(Recurrent attention generative adversarial networks, RAGAN)的运行指标前馈−反馈多步校正方法. 该方法采用基于负相关正则化的集成随机权神经网络, 建立综合生产指标预报模型, 为校正提供前馈信息补偿反馈校正的滞后性. 提出的RAGAN校正, 采用多步校正实现一次调整的思想, 将当前时刻运行指标映射到低维潜变量空间简化数据复杂度, 利用长短期记忆模型实现数据的分步输入, 提高模型可解释性; 采用分布式注意力(Distributed attention, DA)机制构建数据读入网络, 使校正环节获取任务相关性更高的数据, 降低任务复杂度, 减小噪声干扰, 利用校正后的运行指标, 保证系统的综合指标尽可能地跟随设定值运行. 采用中国西部地区最大选矿厂实际数据的仿真实验, 验证了所提方法的有效性. 现有多模态机器翻译(Multi-modal machine translation, MMT)方法将图片与待翻译文本进行句子级别的语义融合. 这些方法存在视觉信息作用不明确和模型对视觉信息不敏感等问题, 并进一步造成了视觉信息与文本信息无法在翻译模型中充分融合语义的问题. 针对这些问题, 提出了一种跨模态实体重构(Cross-modal entity reconstruction, CER)方法. 区别于将完整的图片输入到翻译模型中, 该方法显式对齐文本与图像中的实体, 通过文本上下文与一种模态的实体的组合来重构另一种模态的实体, 最终达到实体级的跨模态语义融合的目的, 通过多任务学习方法将CER模型与翻译模型结合, 达到提升翻译质量的目的. 该方法在多模态翻译数据集的两个语言对上取得了最佳的翻译准确率. 进一步的分析实验表明, 该方法能够有效提升模型在翻译过程中对源端文本实体的忠实度. 针对大数据应用中用户共享数据的访问控制由半可信云服务商实施所带来的隐私泄露、策略和访问日志易被篡改等问题, 提出一种基于区块链的策略隐藏大数据访问控制方法 (A policy-hidden big data access control method based on blockchain, PHAC). 该方法采用区块链技术实施访问控制以减少对服务商的信任依赖, 引入属性基加密以及双线性映射技术, 实现在不泄露访问控制策略的前提下, 通过智能合约正确执行访问控制策略. 同时, 解耦访问控制策略, 简化用户策略的发布、更新和执行. 并应用链上和链下存储相结合方式, 解决智能合约和访问控制策略占用区块链节点资源不断增大的问题. 最后, 对该方法进行了理论分析和HyperLedger Fabric环境下的实验评估, 结果表明该方法能在策略隐藏情况下有效实现访问控制, 但不会给数据拥有者、区块链节点增加过多额外计算和存储开销. 作为聚类的重要组成部分, 边界点在引导聚类收敛和提升模式识别能力方面起着重要作用, 以BP(Border-peeling clustering)为最新代表的边界剥离聚类借助潜在边界信息来确保簇核心区域的空间隔离, 提高了簇骨架代表性并解决了边界隶属问题. 然而, 现有边界剥离聚类仍存在判别特征不完备、判别模式单一、嵌套迭代等约束. 为此, 提出了基于空间向量分解的边界剥离密度聚类(Density clustering based on the border-peeling using space vector decomposition, CBPVD), 以投影子空间和原始数据空间为基准, 从分布稀疏性(紧密性)和方向偏斜性(对称性)两个视角强化边界的细粒度特征, 进而通过主动边界剥离反向建立簇骨架并指导边界隶属. 与同类算法相比, 40个数据集(人工、UCI、视频图像)上的实验结果以及4个视角的理论分析表明了CBPVD在高维聚类和边界模式识别方面具有良好的综合表现. 针对城市污水处理过程时滞导致难以稳定控制的问题, 提出一种自适应滑模控制方法(Adaptive sliding mode control, ASMC). 首先, 分析推流时滞对城市污水处理生化反应过程的影响, 建立时滞影响下的城市污水处理运行控制模型; 其次, 设计一种基于模糊神经网络的预估补偿模型, 完成滞后变量的准确预测, 实现控制模型中变量时刻的统一; 最后, 设计一种具有自适应开关增益系数的滑模控制器(Sliding mode control, SMC), 实现了溶解氧和硝态氮的稳定控制. 将提出的自适应滑模控制方法应用于城市污水处理过程基准仿真平台, 实验结果显示该方法能够实现城市污水处理运行过程稳定控制. 本文针对具有未知动态和 M 个平衡点的连续时间非线性系统, 将线性自适应最优切换控制器和未建模动态补偿器相结合, 基于嵌入转换技术和近似动态规划思想, 提出了一种自适应最优切换控制方法. 首先在非线性系统的 M 个平衡点建立 M 个线性化模型, 当模型参数已知时, 提出了由线性最优切换控制器、切换准则、未建模动态补偿器以及非线性系统组成的控制系统结构; 当模型参数未知时, 在每个平衡点附近采集输入和状态数据, 利用黎卡提方程的迭代求解公式、最小二乘方法、极小值原理以及二次规划技术得到非线性系统的自适应最优切换控制器和最优切换序列; 最后进行仿真实验, 实验结果验证了本文所提方法的有效性、优越性和实际可应用性. 建模与仿真服务化是提升用户体验, 支撑按需访问建模与仿真能力的有效手段. 本文首先从建模与仿真服务的访问、开发以及运行与管理三个层面对建模与仿真服务化的概念进行辨析; 并从服务的分类、抽象层级、基本元素和状态四个角度对建模与仿真服务的特征进行阐述. 然后从基于网页的仿真、基于面向服务架构的仿真系统开发和服务化基础设施三个维度对建模与仿真服务化的发展历程进行梳理. 在此基础之上, 分析了基于云的建模与仿真服务化的构建原则、基本架构和应用模式, 并从访问、开发以及运行与管理三个层面给出建模与仿真服务化相关的支撑技术. 最后, 从理论体系、关键技术和新兴技术三个方面给出进一步发展建模与仿真服务化的建议. 基于视网膜对视觉信息的处理方式, 提出了一种视网膜功能启发的边缘检测层级模型. 针对视网膜神经元在周期性光刺激下产生适应的特性, 构建具有自适应阈值的Izhikevich神经元模型; 模拟光感受器中视锥细胞、视杆细胞对亮度的感知能力, 构建亮度感知编码层; 引入双极细胞对给光—撤光刺激的分离能力, 并结合神经节细胞对运动方向敏感的特性, 构建双通路边缘提取层; 另外根据神经节细胞神经元在多特征调控下延迟激活的现象, 构建具有脉冲延时特性的纹理抑制层; 最后将双通路边缘提取的结果与延时抑制量相融合, 得到最终边缘检测的结果. 以150张来自实验室采集和AGAR数据集中的菌落图像为实验对象对本文方法进行验证. 检测结果的重建图像相似度、边缘置信度、边缘连续性和综合指标分别达到0.9629、0.3111、0.9159和0.7870, 表明本文方法能更有效地进行边缘定位、抑制冗余纹理、保持主体边缘完整性. 本文面向边缘检测任务, 构建了模拟视网膜对视觉信息处理方式的边缘检测模型, 也为后续构建由视觉机制启发的图像计算模型提供了新思路. 由于冗余驱动的存在, 冗余驱动并联机器人系统逆动力学模型存在无限组可跟踪期望轨迹的控制力矩解, 这使得机器人在运行过程中具有完成附加任务的能力. 以实现骨科机器人的安全精准操控为目的, 提出了基于变阻抗控制的冗余驱动并联机器人多目标内力优化方法. 首先, 采用支链分解法对冗余驱动并联机器人的动力学进行建模. 其次, 为实现机器人的安全操作, 设计了冗余驱动并联机器人时变阻抗控制器, 利用李雅普诺夫定理分析了系统的稳定性; 在此基础上, 以消除冗余驱动并联机器人运动过程中的传动间隙为附加任务, 提出了一种以力矩传递性能、驱动功率和控制力为优化目标的多目标融合驱动力优化方法. 最后, 通过仿真实验与对比分析, 验证了所提方法的有效性, 实现了机器人系统传动间隙的消除. 具身智能强调智能受脑、身体与环境协同影响,更侧重关注智能体与环境的“交互”. 因此, 在具身智能的研究中, 智能体的物理形态与感知、学习、控制的关系起到至关重要的作用. 当前, 具身智能综合吸收了机构学领域关于形态、结构, 机器学习领域关于感知、学习, 以及机器人领域关于行为、控制等的相关研究成果, 形成了相对完整、独立并仍在蓬勃发展的学科分支. 但是, 目前尚无文献完整地梳理基于形态的具身智能研究进展. 本文从这个角度出发, 重点围绕基于形态计算的行为生成、基于学习的形态控制, 以及基于学习的形态优化这三方面总结重要的研究进展, 凝炼相关的科学问题, 并总结未来的发展方向, 可为具身智能的研究提供参考. 青藏地区快速的经济发展使得进入高原的群体数量日益增加, 随之而来的高原健康问题也愈发突出. 间歇性低氧训练(Intermittent hypoxic training, IHT)是急进高原前常使用的预习服方法, 一般针对不同个体均设置固定的开环策略, 存在方案制定无标准、系统化的理论指导缺乏、效果不明显等问题. 针对以上情况, 设计了一种小样本数据驱动的IHT策略贝叶斯闭环学习优化框架, 建立自回归结构的高斯过程血氧饱和度(Pripheral oxygen saturation, SpO 2 )预测模型, 并考虑高低风险事件对训练的影响, 设计与氧浓度变化方向和速率相关的风险不对称代价函数, 提出具有安全约束的贝叶斯优化方法, 实现IHT最优供氧浓度的优化决策. 考虑到现有仿真器无法反映个体动态变化过程, 依据“最优速率理论”设计了合理的模型自适应变化律. 所提出闭环干预方法通过该仿真器进行了可行性和有效性验证. 说明该学习框架能够指导个体提升高原适应能力, 减轻其在预习服阶段的非适应性不良反应, 为个性化IHT提供精准调控手段. 液压锚杆钻机摆角系统固有的死区、干扰和时变参数严重影响其动态和稳态性能. 为了解决该问题, 通过融合动态面方法、滑模方法和扩展状态观测器, 提出一种基于改进非线性扩展状态观测器的液压锚杆钻机自适应滑模摆角控制方法. 首先, 引入一种死区补偿方法, 建立了摆角系统的死区补偿模型. 其次, 为了提高系统的抗扰动能力和抑制噪声, 设计了一种改进的非线性扩展状态观测器. 此外, 构造了一种自适应滑模控制律, 这其中, 基于性能函数和动态面方法设计了一种新型的滑模面, 以提高控制精度; 随后, 设计了一种新的滑模趋近律, 以提高系统滑模响应速度和消除滑模抖振. 进一步, 分别设计了估计误差自适应律和参数自适应律以补偿扰动估计误差和抑制时变参数的影响. 最后, 通过将所提出的控制方法与8种控制方法进行比较, 验证其有效性. 超大预训练模型(Pre-trained model, PTM)是人工智能领域近年来迅速崛起的研究方向, 在自然语言处理(Natural language processing, NLP)和计算机视觉等多种任务中达到了有史以来的最佳性能, 促进了人工智能生成内容(Artificial intelligence-generated content, AIGC)的发展和落地. ChatGPT作为当下最火热的PTM, 更是以优异的表现获得各界的广泛关注. 本文围绕ChatGPT展开. 首先概括了PTM的基本思想并对其发展历程进行了梳理; 接着, 详细探讨了ChatGPT的技术细节, 并以平行智能的视角阐述了ChatGPT; 最后, 从技术、范式以及应用等多个方面对PTM的发展趋势进行了展望. 在场景文本检测方法中, 文本实例的边缘特征与其它特征在大多数模型中都是以同样的方式进行处理, 而准确检测相邻文本边缘区域是正确识别任意形状文本区域的关键之一. 如果对边缘特征进行增强并使用独立分支进行建模, 必能有效提高模型的标识准确率. 为此, 提出了三个用以增强边缘特征的网络模块. 其中, 浅层特征增强模块可有效增强包含更多边缘特征的浅层特征; 边缘区域检测分支将普通特征和边缘特征进行区分以对目标的边缘特征进行显式建模; 而分支特征融合模块可将两种特征在识别过程进行更好的融合. 在将这三个模块引入PSENet (Progressive scale expansion network) 之后, 相关消融实验表明这三个模块的单独使用及其组合均可进一步增加网络的预测准确率. 此外, 在三个常用公开数据集上与其它十个最新模型的比较结果表明, 改进后得到边缘特征增强网络 (Edge-oriented feature reinforcing network, EFRNet) 的识别结果具有较高的F1值. 为了提升高速列车牵引系统的稳定性和可靠性, 针对其牵引电机提出了一种基于未知输入观测器的转子断条和速度传感器故障联合诊断方法. 首先, 通过非奇异坐标变换, 将牵引电机系统解耦为两个分别只包含转子断条故障和速度传感器故障的子系统, 实现转子断条故障和速度传感器故障的解耦, 并进一步利用一阶低通滤波器将含速度传感器故障的子系统转化为增广系统. 其次, 对含转子断条故障的子系统和速度传感器故障增广系统分别设计未知输入区间观测器和未知输入滑模观测器. 在此基础上, 采用未知输入区间观测器上界和下界构建转子断条故障诊断的检测变量和自适应阈值, 利用未知输入滑模观测器的等效输出控制原理实现速度传感器故障估计. 最后, 通过仿真和TDCS-FIB平台实验验证了所提方法的有效性和鲁棒性. 烧结过程的运行性能是生产效率和能源利用的综合表现. 运行性能评价是保持烧结过程的运行性能处于最优等级的前提. 考虑到时间序列数据的冗余, 提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法. 首先, 利用单因素方差分析方法选取影响运行性能等级的检测参数; 然后, 采用多粒度区间信息粒化实现检测参数时间序列数据的降维, 并进行粒度聚类, 得到聚类标签; 最后, 以聚类得到的聚类标签为输入, 利用随机森林算法进行运行性能等级评价. 利用实际钢铁企业的运行数据进行实验, 构建两个对比实验, 分别采用基于时间序列数据聚类(Time series data clustering, TSDC)的方法和基于时间序列特征聚类 (Time series feature clustering, TSFC)的方法. 实验结果表明, 该方法为有效评价烧结过程的运行性能提供了一套可行方案, 为操作人员提升烧结过程运行性能提供了有力的指导. 多元时间序列(Multivariate time series, MTS)分类是许多领域中的重要问题, 准确的分类结果可以有效地帮助决策. 当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系, 并且无法评估分类结果的可信度, 这会导致模型性能受限, 以及缺乏具备统计意义的可靠性解释. 本文提出了一种基于不确定性的多元时间序列分类算法, 变分贝叶斯共享图神经网络, 即VBSGNN (Variational Bayes shared graph neural network). 首先通过图神经网络(Graph neural network, GNN)提取多元变量之间的交互特征, 然后利用贝叶斯神经网络(Bayesian neural network, Bnn)为预测过程引入了不确定性. 最后在10个公开MTS数据集上进行了算法实验, 并与当前提出的7类算法进行了比较, 结果表明VBSGNN可有效学习多元变量之间的交互关系, 提升了分类效果, 并使得模型具备一定的可靠性评估能力. 针对传统技术难以解决规模化混杂生产线缓冲区容量分配问题(Buffer allocation problem, BAP), 提出了一种规模化生产线递阶分解建模并行寻优技术(Hierarchical decomposition modeling parallel optimizing technique of large-scale production lines, HDMPOT). 该技术结合混杂生产线系统综合方法与分解方法的技术思想, 兼顾生产线平衡性与系统规模, 将原系统递阶分解为包含虚拟生产线在内的 n + 1个子生产线系统, 通过求解子系统的最优解构造原系统的渐近最优解, 并在系统递阶建模阶段提出了一种设备模糊聚类的辅助方式; 同时, 基于混杂生产线系统综合方法, 也提出了一种系统渐次综合的初解改进确定方法; 并提出了一种通过构造动态步长来设计领域结构的改进型禁忌搜索算法(Simple tabu search, STS), 对子系统进行并行寻优; 最后, 对技术算法的收敛性进行了证明. 提出的生产线递阶分解建模并行寻优技术具有一般性, 对受设备随机故障等随机事件影响的生产线, 尤其是规模化生产线系统其他优化、控制问题也具有借鉴和参考价值. 作为一种不需要事先获得训练数据的机器学习方法, 强化学习(Reinforcement learning, RL)在智能体与环境的不断交互过程中寻找最优策略, 是解决序贯决策问题的一种重要方法. 通过与深度学习(Deep learning, DL)的结合, 深度强化学习(Deep reinforcement learning, DRL)同时具备了强大的感知和决策能力, 被广泛应用于多个领域来解决复杂的决策问题. 异策略强化学习通过将交互经验进行存储和回放, 将探索和利用分离开来, 更易寻找到全局最优解. 如何对经验进行合理高效的利用是提升异策略强化学习方法效率的关键. 本文首先对强化学习的基本理论进行了介绍; 随后对同策略和异策略强化学习算法进行了简要介绍; 接着介绍了经验回放(Experience replay, ER)问题的两种主流解决方案, 包括经验利用和经验增广; 最后对相关的研究工作进行了总结和展望. Web3技术催生的去中心化自治组织 (Decentralized autonomous organization, DAO) 正以颠覆性的方式重新定义要素资源、变革生产关系与塑造组织形态. 为了更好地响应DAO研究与应用需求, 本文从组织和运营两个角度重新解析DAO, 认为其应当被更广义而精确地定义为去中心化自治组织与运营 (Decentralized autonomous organization and operation) . 在此基础上, 阐述DAO的关键原理与基本要求, 探讨社会物理信息系统、平行智能等基础设施以及数字孪生、元宇宙、Web3等支撑技术, 构建涵盖组织层、协调层以及执行层等的DAO五层智能新架构, 提出DAO的闭环方程以及功能导向的智能新算法, 分析个体、组织与社会视角下的DAO治理机制, 研究面向生物人、机器人与数字人的DAO激励机制, 并介绍DAO的典型与潜在应用场景. 最后, 总结全文并展望DAO未来研究方向. 在图像标题生成领域, 交叉注意力机制在建模语义查询与图像区域的关系方面, 已经取得了重要的进展. 然而, 其视觉连贯性仍有待探索. 为了填补这项空白, 提出了一种新颖的语境辅助的交叉注意力(Context-assisted cross attention, CACA)机制, 利用历史语境记忆(Historical context memory, HCM), 来充分考虑先前关注过的视觉线索对当前注意力语境生成的潜在影响. 同时, 提出了一种名为“自适应权重约束(Adaptive weight constraint, AWC)” 的正则化方法, 来限制每个CACA模块分配给历史语境的权重总和. 本文将CACA模块与AWC方法同时应用于转换器(Transformer)模型, 构建了一种语境辅助的转换器(Context-assisted transformer, CAT)模型, 用于解决图像标题生成问题. 基于MS COCO (Microsoft common objects in context)数据集的实验结果证明, 与当前先进的方法相比, 该方法均实现了稳定的提升. 针对含有推进器故障和状态测量不确定的无人艇(Unmanned surface vehicle, USV)系统, 提出一种基于双扰动观测器的固定时间容错跟踪控制(Double disturbance observer-based fixed-time fault-tolerant control, DDO-FxFC)方法. 设计两个固定时间扰动观测器, 分别估计状态测量不确定性产生的非匹配干扰和包含推进器故障的集总非线性, 同时自适应实时补偿未知观测误差; 采用测量位姿跟踪误差及其动态, 设计快速非奇异终端滑模面, 构建DDO-FxFC框架; 理论分析证明DDO-FxFC方法能够确保跟踪误差固定时间收敛, 其中收敛时间的上界独立于系统初始状态; 针对原型USV的仿真结果和综合对比验证所提出DDO-FxFC技术的有效性和优越性. 针对水下观测图像的颜色失真和散射模糊问题, 提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks, CycleGAN)的水下图像颜色校正与增强算法. 为了利用CycleGAN学习水下降质图像到空气中图像的映射关系, 对传统CycleGAN的损失函数进行了改进, 提出了基于图像强边缘结构相似度(Strong edge and structure similarity, SESS)损失函数的SESS-CycleGAN, SESS-CycleGAN可以在保留原水下图像的边缘结构信息的前提下实现水下降质图像的颜色校正和对比度增强. 为了确保增强后图像和真实脱水图像颜色的一致性, 建立了SESS-CycleGAN和正向生成网络G相结合的网络结构; 并提出了两阶段学习策略, 即先利用非成对训练集以弱监督方式进行SESS-CycleGAN学习, 然后再利用少量成对训练集以强监督方式进行正向生成网络G的监督式学习. 实验结果表明: 本文算法在校正水下图像颜色失真的同时还增强了图像对比度, 且较好地实现了增强后图像和真实脱水图像视觉颜色的一致性. 随着国家“双碳”重大战略的提出, 高比例新能源并网将成为我国电力能源转型的重要态势. 针对火电机组、配电网和需求侧关联的系列运行约束制约了电网对高比例新能源的有效消纳这一问题, 本文提出重大耗能企业这一主要电力负荷参与网需求响应(Demand response, DR)的研究思路, 通过重大耗能企业与电网协调调度促进新能源消纳, 并获得经济补偿以减少运行成本. 研究首先基于混合需求侧响应机制, 提出以重大耗能企业、新能源、火电机组为核心的协调调度方法, 并根据新能源预测值−预测误差的信息依存顺序提出了两步调度策略. 在此基础上, 进行生产过程行为建模以实现重大耗能企业需求侧响应决策描述, 并建立高比例新能源并网的重大耗能企业需求响应与电网协调调度优化模型. 最后, 基于烟台电网实际系统进行算例分析, 验证了重大耗能企业通过需求响应参与电网协调调度以及两步调度策略的有效性. 基于深度学习的方法在去雾领域已经取得了很大进展, 但仍然存在去雾不彻底和颜色失真等问题. 针对这些问题, 本文提出一种基于内容特征和风格特征相融合的单幅图像去雾网络. 所提网络包括特征提取、特征融合和图像复原三个子网络, 其中特征提取网络包括内容特征提取模块和风格特征提取模块, 分别用于学习图像内容和图像风格以实现去雾的同时可较好地保持原始图像的色彩特征. 在特征融合子网络中, 引入注意力机制对内容特征提取模块输出的特征图进行通道加权实现对图像主要特征的学习, 并将加权后的内容特征图与风格特征图通过卷积操作相融合. 最后, 图像复原模块对融合后的特征图进行非线性映射得到去雾图像. 与已有方法相比, 所提网络对合成图像和真实图像均可取得理想的去雾结果, 同时可有效避免去雾后的颜色失真问题. 虚假数据注入攻击严重威胁了电力信息物理系统的状态估计, 而目前大多数检测方法侧重于攻击存在性检测, 无法获取准确的受攻击位置. 故本文提出了一种基于灰狼优化多隐层极限学习机的电力信息物理系统虚假数据注入攻击检测方法. 所提方法将攻击检测看作是一个多标签二分类问题, 不仅将用于特征提取与分类训练的极限学习机由单隐层变为多隐层, 以解决极限学习机特征表达能力有限的问题, 且融入了具有强全局搜索能力的灰狼优化算法以提高多隐层极限学习机分类精度和泛化性能. 进而自动识别系统各个节点状态量的异常, 获取受攻击的精确位置. 通过在不同场景下对IEEE-14和57节点测试系统上进行大量实验, 验证了所提方法的有效性, 且分别与极限学习机、未融入灰狼优化的多隐层极限学习机以及支持向量机相比, 所提方法具有更精确的定位检测性能. 针对众包标记经过标记集成后仍然存在噪声的问题, 提出了一种基于自训练的众包标记噪声纠正算法(Self-training-based label noise correction, STLNC). STLNC整体分为3个阶段: 第1阶段利用过滤器将带集成标记的众包数据集分为噪声集和干净集. 第2阶段利用加权密度峰值聚类算法构建数据集中低密度实例指向高密度实例的空间结构关系. 第3阶段首先根据发现的空间结构关系设计噪声实例选择策略; 然后利用在干净集上训练的集成分类器对选择的噪声实例按照设计的实例纠正策略进行纠正, 并将纠正后的实例加入到干净集, 再重新训练集成分类器; 重复实例选择与纠正过程直到噪声集中所有的实例被纠正; 最后用最后一轮训练得到的集成分类器对所有实例进行纠正. 在仿真标准数据集和真实众包数据集上的实验结果表明STLNC比其他5种最先进的噪声纠正算法在噪声比和模型质量两个度量指标上表现更优. 为避免使用函数逼近器(神经网络或模糊系统), 并提高双惯量伺服系统的瞬态响应和稳态性能, 本文针对含外部扰动的双惯量伺服系统, 提出一种基于预设性能函数(Prescribed performance function, PPF)的类比例状态反馈控制策略. 首先, 提出一种改进的带有最大超调、收敛速率以及稳态误差的预设性能函数, 并将该函数融入控制器设计使二惯量伺服的跟踪误差保持在预定的边界之内. 其次, 基于预设性能函数设计了类比例状态反馈控制器实现跟踪控制. 与传统基于函数逼近控制方法相比较, 该方法可降低控制系统计算复杂度同时消除反演控制中存在的复杂度爆炸问题. 最后, 利用双惯量伺服系统实验平台开展了对比实验, 验证了所提出方法的有效性. 布匹瑕疵检测是纺织工业中产品质量评估的关键环节, 实现快速、准确、高效的布匹瑕疵检测对于提升纺织工业的产能具有重要意义. 在实际布匹生产过程中, 布匹瑕疵在形状、大小及数量分布上存在不平衡问题, 且纹理布匹复杂的纹理信息会掩盖瑕疵的特征, 加大布匹瑕疵检测难度. 本文提出基于深度卷积神经网络(Deep convolutional neural network, DCNN)的分类不平衡纹理布匹瑕疵检测方法, 首先建立一种基于通道叠加的ResNet50卷积神经网络模型(ResNet50+)对布匹瑕疵特征进行优化提取; 其次提出一种冗余特征过滤的特征金字塔网络对特征图中的背景特征进行过滤, 增强其中瑕疵特征的语义信息; 最后构造针对瑕疵数量进行加权的MFL (Multi focal loss)损失函数, 减轻数据集不平衡对模型的影响, 降低模型对于少数类瑕疵的不敏感性. 通过实验对比, 本文提出的方法能有效提升布匹瑕疵检测的准确率及定位精度, 同时降低了布匹瑕疵检测的误检率和漏检率, 明显优于当前主流的布匹瑕疵检测算法. 在医学图像中, 器官或病变区域的精准分割对疾病诊断等临床应用有着至关重要的作用, 然而分割模型的训练依赖于大量标注数据. 为减少对标注数据的需求, 本文主要研究针对医学图像分割的半监督学习任务. 现有半监督学习方法广泛采用平均教师模型, 其缺点在于, 基于指数移动平均(Exponential moving average, EMA)的参数更新方式使得老师模型累积学生模型的错误知识. 为避免上述问题, 提出一种双模型交互学习方法, 引入像素稳定性判断机制, 利用一个模型中预测结果更稳定的像素监督另一个模型的学习, 从而缓解了单个模型的错误经验的累积和传播. 提出的方法在心脏结构分割、肝脏肿瘤分割和脑肿瘤分割三个数据集中取得优于前沿半监督方法的结果. 在仅采用30%的标注比例时, 该方法在三个数据集上的戴斯相似指标(Dice similarity coefficient, DSC)分别达到89.13%, 94.15%, 87.02%. 针对存在临界点的A类被控对象及不存在临界点的B类被控对象, 分别采用其 \begin{document}$-180^\circ$\end{document} \begin{document}$-120^\circ$\end{document} 相位点的频率和增益提出了PID (Proportional-integral-derivative) 控制器参数的优化整定方法. 基于Tchebyshev多项式和分数阶积分器求取被控对象 \begin{document}$-180^\circ$\end{document} \begin{document}$-120^\circ$\end{document} 相位点的频率和增益, 建立其积分滞后模型. 采用负载扰动下跟踪误差平方和(Sum of squared error, SSE)最小作为优化指标, 使闭环系统具有强的鲁棒性的最大灵敏度和最大补灵敏度为约束方程, 针对两类被控对象, 分别建立了基于 \begin{document}$-180^\circ$\end{document} \begin{document}$-120^\circ$\end{document} 相位点频率和增益的PID控制器比例、积分与微分三个参数的优化整定规则. 通过与其他常用PID控制方法的仿真与物理对比实验, 表明所提方法的优越性. 强化学习(Reinforcement learning, RL)在围棋、视频游戏、导航、推荐系统等领域均取得了巨大成功. 然而, 许多强化学习算法仍然无法直接移植到真实物理环境中. 这是因为在模拟场景下智能体能以不断试错的方式与环境进行交互, 从而学习最优策略. 但考虑到安全因素, 很多现实世界的应用则要求限制智能体的随机探索行为. 因此, 安全问题成为强化学习从模拟到现实的一个重要挑战. 近年来, 许多研究致力于开发安全强化学习(Safe reinforcement learning, SRL)算法, 在确保系统性能的同时满足安全约束. 本文对现有的安全强化学习算法进行全面综述, 将其归为三类: 修改学习过程、修改学习目标、离线强化学习, 并介绍了5大基准测试平台: Safety Gym、safe-control-gym、SafeRL-Kit、D4RL、NeoRL. 最后总结了安全强化学习在自动驾驶、机器人控制、工业过程控制、电力系统优化和医疗健康领域中的应用, 并给出结论与展望. 针对标准粒子群优化算法存在早熟收敛和容易陷入局部最优的问题, 本文提出了一种基于事件触发的全信息粒子群优化算法(Event-triggering-based full-information particle swarm optimization, EFPSO). 首先, 引入一类基于粒子空间特性的事件触发策略实现粒子群优化算法(Particle swarm optimization, PSO) 的模态切换, 更好地维持了算法搜索和收敛能力之间的动态平衡. 然后, 鉴于引入历史信息能够降低算法陷入局部最优的可能性, 提出一种全信息策略来克服PSO算法搜索能力不足的缺陷. 数值仿真实验表明, EFPSO算法在种群多样性、收敛率、成功率方面优于其他改进的PSO算法. 最后, 应用EFPSO算法对变分模态分解(Variational mode decomposition, VMD)去噪算法进行改进, 并在现场管道信号去噪取得了很好的效果. 高炉料面形貌是反映煤气流分布和煤气利用率的关键指标, 研究高炉料面炉料堆积形状数学建模方法对实现高炉精准布料控制和“双碳”战略在钢铁行业落地具有重要意义. 针对高炉多环布料情况下料面堆积形状预测难的问题, 本文提出了一种基于炉料运动轨迹和径向移动距离的高炉料面炉料堆积形状建模方法. 首先, 提出了一种与炉料初始状态和溜槽状态相关的炉料运动轨迹建模方法, 获取炉料从节流阀至料面的炉料运动轨迹, 并确定炉料在炉喉空区的内轨迹曲线和外轨迹曲线. 然后, 基于炉料运动轨迹和初始料面形状, 以体积守恒原则为约束, 提出了一种基于炉料径向移动距离的高炉料面炉料堆积形状数学建模方法, 获取炉料在料面的堆积形状. 最后, 基于某钢铁厂2# 高炉的尺寸建立离散单元法仿真模型, 模型仿真结果验证了所提方法的准确性和有效性. 针对脉冲推力航天器轨道追逃博弈问题, 提出一种基于强化学习的决策方法, 实现追踪星在指定时刻抵近至逃逸星的特定区域, 其中两星都具备自主博弈能力. 首先, 充分考虑追踪星和逃逸星的燃料约束、推力约束、决策周期约束、运动范围约束等实际约束条件, 建立锥形安全接近区及追逃博弈过程的数学模型; 其次, 为了提升航天器面对不确定博弈对抗场景的自主决策能力, 以近端策略优化 (Proximal policy optimization, PPO) 算法框架为基础, 采用左右互搏的方式同时训练追踪星和逃逸星, 交替提升两星的决策能力; 在此基础上, 为了在指定时刻完成追逃任务, 提出一种终端诱导的奖励函数设计方法, 基于CW (Clohessy Wiltshire)方程预测两星在终端时刻的相对误差, 并将该预测误差引入奖励函数中, 有效引导追踪星在指定时刻进入逃逸星的安全接近区. 与现有基于当前误差设计奖励函数的方法相比, 本文方法能够有效提高追击成功率. 最后, 通过与其他学习方法仿真对比, 验证本文提出的训练方法和奖励函数设计方法的有效性和优越性. 由无人机(Unmanned aerial vehicles, UAV)和地面移动机器人组成的异构机器人系统在协作执行任务时, 可以充分发挥两类机器人各自的优势. 无人机运动灵活, 但通常续航能力有限; 地面机器人载荷多, 适合作为无人机的着陆平台和移动补给站, 但运动受路网约束. 本文研究这类异构机器人系统协作路径规划问题. 为了降低完成任务的时间代价, 本文提出一种由蚁群算法和遗传算法相结合的两步法对地面机器人和无人机的路线进行解耦, 同时规划地面机器人和无人机的路线. 第1步使用蚁群算法为地面机器人搜索可行路线. 第2步对无人机的最优路径建模, 采用遗传算法求解并将无人机路径长度返回至第1步中, 用于更新路网的信息素参数, 从而实现异构协作系统路径的整体优化. 另外, 为了进一步降低无人机的飞行时间代价, 研究了无人机在其续航能力内连续完成多任务的协作路径规划问题. 最后, 通过大量仿真实验验证了所提方法的有效性. 孪生网络跟踪算法在训练阶段多数采用 \begin{document}$ {L_2}$\end{document} 正则化, 而忽略了网络架构的层次和特点, 因此跟踪的鲁棒性较差. 针对该问题, 提出一种分段式细粒度正则化跟踪(Segmented fine-grained regularization tracking, SFGRT)算法, 将孪生网络的正则化划分为滤波器、通道和神经元三个粒度层次, 创新性地建立了分段式细粒度正则化模型, 分段式可针对不同层次粒度组合, 利用组套索构造惩罚函数, 并通过梯度自平衡优化函数自适应地优化各惩罚函数系数, 该模型可提升网络架构的泛化能力并增强鲁棒性. 最后, 基于VOT2019跟踪数据库的消融实验表明, 与基线算法SiamRPN++比较, 在鲁棒性指标上降低了7.1%及在平均重叠期望(Expected average overlap, EAO)指标上提升了1.7%, 由于鲁棒性指标越小越好, 因此鲁棒性得到显著增强. 基于VOT2018、VOT2019、UAV123和LaSOT等主流数据库的实验也表明, 与国际前沿跟踪算法相比, 所提算法具有较好的鲁棒性和跟踪性能. 现实世界中存在很多目标函数的计算非常昂贵, 甚至目标函数难以建模的复杂优化问题. 常规优化方法在解决此类问题时要么无从入手, 要么效率低下. 离线数据驱动的进化优化方法不需对真实目标函数进行评估, 跳出了传统优化方法的固铚, 极大推动了昂贵优化问题和不可建模优化问题的求解. 但离线数据驱动进化优化的效果严重依赖于所采用代理模型的质量. 为提升离线数据驱动进化优化的性能, 提出了一个基于剪枝堆栈泛化的代理模型构建方法. 具体而言, 一方面基于异构的基学习器建立初级模型池, 再采用学习方式对各初级模型进行组合, 以提升代理模型的通用性和准确率. 另一方面基于等级保护指标对初级模型进行剪枝, 在提高初级模型集成效率的同时进一步提升最终代理模型的准确率, 并更好地指导种群的搜索. 为验证所提方法的有效性, 与7个最新的离线数据驱动的进化优化算法在12个基准测试问题上进行对比, 实验结果表明所提出的方法具有明显的优势. 苛性碱溶液浓度是氧化铝生产过程中的重要运行指标, 由于苛性碱溶液的温度和浓度频繁波动, 导致目前的浓度检测仪表检测精度低, 只能采用人工化验获得苛性碱浓度值, 化验结果的严重滞后导致无法实现苛性碱浓度的自动控制, 影响氧化铝产品质量. 在分析苛性碱溶液浓度控制过程动态特性的基础上建立了由线性模型和未知非线性动态系统描述的苛性碱浓度预报模型, 将参数辨识与自适应深度学习相结合, 提出端边云协同的氧化铝生产过程苛性碱浓度智能预报方法, 并采用氧化铝生产企业的实际生产数据对本文所提方法进行应用验证. 应用结果表明, 所提的苛性碱浓度智能预报方法可以实时、准确预报苛性碱浓度, 为实现苛性碱浓度的闭环运行优化控制创造了条件. 针对经验模态分解(Empirical mode decomposition, EMD)系列方法存在的模态分裂(Mode splitting, MS)问题, 提出中值互补集合经验模态分解(Median complementary ensemble EMD, MCEEMD)算法. 通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD, CEEMD)的MS问题, 证明了使用中值算子替代算术平均算子对抑制MS的有效性. MCEEMD算法首先添加 N 对互补的白噪声至原信号中, 并经过EMD分解得到2 N 组固有模态函数(Intrinsic mode functions, IMFs), 然后分别对其中互补相关的IMFs两两取平均得到 N 组IMFs, 最后使用中值算子处理上述 N 组IMFs得到输出结果. 对仿真信号与实测信号的分析结果表明, 本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题, 而且避免了单一使用中值算子的两个缺点分解完备性差和IMFs中存在毛刺现象. 针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题, 本文提出了一种基于自适应全局定位网络(Adaptive global localization network, AGLNet)的深度学习缺陷检测算法. 首先, 引入了一种残差网络(Residual network, ResNet)与特征金字塔网络(Feature pyramid network, FPN)集成的特征提取结构, 减少缺陷语义信息在层级传递间的消失; 其次, 提出基于Tree-structure parzen estimation的自适应树型候选框提取网络(Adaptive tree-structure region proposal network, AT-RPN), 无需先验知识的测试积累, 避免了人为调参的训练模; 最后, 引入了全局定位算法(Global localization regression)算法以全局定位的模式在复杂的缺陷检测中实现缺陷更精确定位.本文实现一种快速、准确、更智能化、更适用于实际工业应用的热轧带钢表面缺陷的算法.实验结果表明, AGLNet在NEU-DET热轧带钢表面缺陷数据集上的检测速度保持在11.8fps, 平均精度达到了79.90 %, 优于目前其他深度学习带钢表面缺陷检测算法; 另外该算法还具备较强的泛化能力. 大量基于深度学习的无监督视频目标分割算法存在模型参数量与计算量较大的问题, 这显著地限制了算法在实际中的应用. 提出了基于运动引导的视频目标分割网络, 在大幅降低模型参数量与计算量的同时提升视频目标分割性能.整个模型由双流网络、运动引导模块、多尺度渐进融合模块三部分组成. 具体地, RGB图像与光流估计输入双流网络提取物体外观特征与运动特征. 然后, 运动引导模块通过局部注意力提取运动特征中的语义信息, 用于引导外观特征学习丰富的语义信息. 最后, 多尺度渐进融合模块获取双流网络的各个阶段输出的特征,将深层特征渐进地融入浅层特征, 最终提升边缘分割效果. 在三个标准数据集上进行了大量评测, 实验结果证明了该方法的优越性能. 微型扑翼飞行器(Flapping wing micro aerial vehicle, FWMAV)因飞行效率高、质量轻、耗能低、机动性强等显著优点, 在飞行器研究和应用中占据重要地位. 目前, FWMAV姿态控制成为飞行器控制研究领域的研究热点. 针对FWMAV姿态控制问题, 基于平行智能理论框架提出了一种FWMAV抗扰动姿态控制器. 通过建立人工系统(Artificial systems, A)、计算实验(Computational experiments, C)、平行执行(Parallel execution, P)三个过程, 得到一个能够有效解决FWMAV姿态控制过程中扰动问题的控制器, 并通过理论分析和数值仿真证明了该控制器的有效性. 基于深度学习的目标检测方法是目前计算机视觉领域的热点, 在目标识别、跟踪等领域发挥了重要的作用. 随着研究的深入开展, 基于深度学习的目标检测方法主要分为有锚框的目标检测方法和无锚框的目标检测方法, 其中无锚框的目标检测方法无需预定义大量锚框, 具有更低的模型复杂度和更稳定的检测性能, 是目前目标检测领域中较前沿的方法. 在调研国内外相关文献的基础上, 梳理基于无锚框的目标检测方法及各场景下的常用数据集, 根据样本分配方式不同, 分别从基于关键点组合、中心点回归、Transformer、锚框和无锚框融合等4个方面进行整体结构分析和总结, 并结合COCO数据集上的性能指标进一步对比. 在此基础上, 介绍了无锚框目标检测方法在重叠目标、小目标和旋转目标等复杂场景情况下的应用, 聚焦目标遮挡、尺寸过小、角度多等关键问题, 综述现有方法的优缺点及难点. 最后对无锚框目标检测方法中仍存在的问题进行总结并对未来发展的应用趋势进行展望. 卷积混叠环境下的的盲源分离(Blind source separation, BSS)是一个极具挑战性和实际意义的问题. 本文在独立分量分析(Independent component analysis, ICA)框架下, 建立非负矩阵分解(Nonnegative matrix factorization, NMF)模型, 设计新的优化目标函数, 通过严格的数学理论推导, 得到新的模型参数更新规则; 并对解混叠矩阵进行标准化处理, 避免幅度歧义性问题; 在源信号的重构阶段, 通过实时更新非负矩阵分解模型参数, 避免源信号的排序歧义性问题. 实验结果验证了本文算法在分离中英文语音混叠信号、音乐混叠信号时的有效性和优越性. 小世界神经网络具有较快的收敛速度和优越的容错性, 近年来得到广泛关注. 然而, 在网络构造过程中, 随机重连可能造成重要信息丢失, 进而导致网络精度下降. 针对该问题, 基于Watts-Strogatz (WS) 型小世界神经网络, 提出了一种基于突触巩固机制的前馈小世界神经网络(Feedforward small-world neural network based on synaptic consolidation, FSWNN-SC). 首先, 使用网络正则化方法对规则前馈神经网络进行预训练, 基于突触巩固机制, 断开网络不重要的权值连接, 保留重要的连接权值; 其次, 设计重连规则构造小世界神经网络, 在保证网络小世界属性的同时实现网络稀疏化, 并使用梯度下降算法训练网络; 最后, 通过4个UCI基准数据集和2个真实数据集进行模型性能测试, 并使用Wilcoxon符号秩检验对对比模型进行显著性差异检验. 实验结果表明: 所提出的FSWNN-SC模型在获得紧凑的网络结构的同时, 其精度显著优于规则前馈神经网络及其它WS型小世界神经网络. 大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高以致无法扩展到大规模数据的问题.其中, 基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵, 利用重构矩阵进行聚类, 有效地降低了算法的时间和空间复杂度.然而, 现有的方法忽视了锚点之间的差异, 均等地看待所有锚点, 导致聚类结果受到低质量锚点的限制.为了定位更具有判别性的锚点, 加强高质量锚点对聚类的影响, 提出了一种基于加权锚点的大规模多视图聚类算法(Multi-view Clustering With Weighted Anchors, MVC-WA).通过引入自适应锚点加权机制, 所提方法在统一框架下确定锚点的权重, 进行锚图的构建.同时, 为了增加锚点的多样性, 根据锚点之间的相似度进一步调整锚点的权重.在9个基准数据集上与现有最先进的大规模多视图聚类算法的对比实验结果验证了所提方法的高效性与有效性. 针对移动机器人视觉伺服跟踪控制问题, 提出了一种基于自适应动态规划(Adaptive dynamic programming, ADP) 的控制方法. 通过移动机器人上的相机拍摄共面特征点的当前图像、期望图像以及参考图像, 利用单应性技术得到移动机器人当前的位姿信息与期望的位姿信息(即平移量与旋转角度), 从而通过当前与期望的平移旋转之间差值得到系统的开环误差模型. 进而, 针对此系统设计最优控制器, 同时做合适的控制输入变换. 在此基础上设计一个基于ADP的视觉伺服控制方法以保证移动机器人完成轨迹跟踪任务. 为求出最优控制输入, 采用一个评价神经网络近似值函数, 通过不断学习逼近哈密顿-雅可比-贝尔曼(Hamilton-Jacobi-Bellman, HJB)方程的解. 与以往不同的是, 由于系统存在时变项, 导致HJB方程也含有时变项, 因此需要设计具有时变权值结构的神经网络近似值函数. 最终证明在所设计的控制方法作用下, 闭环系统是一致最终有界的. 针对移动机器人在复杂场景中难以稳定跟随目标的问题, 提出基于改进YOLOX的移动机器人目标跟随方法, 主要包括目标检测、目标跟踪以及目标跟随三个部分. 首先, 以 YOLOX 网络为基础, 在其框架下将主干网络采用轻量化网络 MobileNetV2X, 提高复杂场景中目标检测的实时性. 然后, 通过改进的卡尔曼滤波器获取目标跟踪状态并采用数据关联进行目标匹配, 同时通过深度直方图判定目标发生遮挡后, 采用深度概率信息约束及最大后验概率进行匹配跟踪, 确保机器人在遮挡情况下稳定跟踪目标. 再采用基于视觉伺服控制的目标跟随算法, 当跟踪目标丢失时, 引入重识别特征主动搜寻目标实现目标跟随. 最后, 在公开数据集上与具有代表性的目标跟随方法进行了定性和定量实验, 同时在真实场景中完成了移动机器人目标跟随实验, 实验结果均验证了所提方法具有较好的鲁棒性和实时性. 针对密集场景中大规模冲突导致多机器人路径规划(Multi-agent path finding, MAPF) 成功率低的问题, 引入讨价还价博弈机制并以层级协作A * (Hierarchical cooperative A * , HCA * ) 算法为内核, 提出一种基于讨价还价博弈机制的改进层级协作A * (Bargaining game based improving HCA * , B-IHCA * ) 算法. 首先, 在HCA * 算法基础上, 对导致路径无解的冲突双方或多方进行讨价还价博弈. 由高优先级机器人先出价, 当低优先级机器人在该条件下无法求解时, 则其将不接受该出价, 并通过降约束求解方式进行还价. 再由其他冲突方对此做进一步还价, 直至各冲突方都能协调得到可接受的路径方案. 其次, 为避免原始HCA * 算法由于高优先级的阻碍陷于过长或反复无效搜索状态, 在底层A * 搜索环节加入了熔断机制. 通过熔断机制与讨价还价博弈相配合可在提升路径求解成功率的同时兼顾路径代价. 研究结果表明, 所提算法在密集场景大规模机器人路径规划问题上较现有算法求解成功率更高, 求解时间更短, 路径代价得到改善, 验证了算法的有效性. 基于脑电(Electroencephalogram, EEG)的谎言预测技术依赖于对事件相关电位(Event-related potential, ERP)的有效解码, 当前主要采用手工设计特征进行脑电分析. 近年, 单试次脑电分类方法取得了长足进步, 其中端到端的脑电分类方法能够实现对脑电的自动特征提取和分类, 但在谎言预测中缺乏研究和应用, 同时存在无法在测谎场景下直接应用的问题. 本研究设计基于复合反应范式(Complex trial protocol, CTP)进行自我面孔信息识别任务的实验, 采集了18 名被试的脑电数据. 研究了不同端到端的单试次ERP分类方法在谎言预测中的应用, 同时针对单试次脑电解码方法无法直接实际应用的问题, 提出了一种类自举算法. 算法基于数据分布假设, 通过对比各类刺激图像被视为探针刺激时所训练模型的性能, 来推断真正的探针刺激. 实验结果表明, 在基于自我面孔信息的CTP的谎言预测中, 所提出的类自举法性能优于传统探针预测方法, 在仅使用少量脑电数据情况下, 可实现准确的谎言预测. 多模态数据间交互式任务的涌现对综合利用不同模态的知识提出了高要求, 多模态知识图谱应运而生, 其通过融合不同模态的知识来满足这类任务的需求. 然而, 现有多模态知识图谱存在图谱知识不完整的问题, 严重阻碍对信息的有效利用. 缓解此问题关键是通过实体对齐方法对图谱进行补全. 当前多模态实体对齐方法以固定权重融合多种模态信息, 在融合过程中忽略了不同模态信息贡献的差异性. 为解决上述问题, 本文设计一套自适应特征融合机制, 根据不同模态数据质量动态融合实体结构信息和视觉信息. 此外, 考虑到视觉信息质量不高、知识图谱之间的结构差异也影响实体对齐的效果, 本文分别设计提升视觉信息有效利用率的视觉特征处理模块以及缓和结构差异性的三元组筛选模块. 在多模态实体对齐任务上的实验结果表明, 本文提出的多模态实体对齐方法的性能优于当前最好的方法. 无人驾驶汽车行驶是连续时空的三维运动, 汽车周围的目标不可能突然消失或者出现, 因此, 对于感知层而言, 稳定可靠的多目标跟踪(Multi-object tracking, MOT)意义重大. 针对传统的目标关联和固定生存周期管理的不足, 提出了基于边界交并比(Border intersection over union, BIoU)度量的目标关联和自适应生存周期管理策略. BIoU综合了欧氏距离和交并比(Intersection over union, IoU)的优点, 提高了目标关联的精度. 自适应生存周期管理将目标轨迹置信度与生存周期相联系, 显著减少了目标丢失和误检. 在KITTI多目标跟踪数据集上的实验验证了该方法的有效性. 药物相互作用(Drug-drug interaction, DDI)是指不同药物存在抑制或促进等作用. 现有DDI预测方法往往直接利用药物分子特征表示预测DDI, 而忽略药物分子中不同原子对DDI的影响. 为此, 提出基于多层次注意力机制和消息传递神经网络的DDI预测方法. 该方法将DDI建模为通过学习基于序列表示的药物分子特征实现DDI预测的链接预测问题. 首先, 建立基于注意力机制和消息传递神经网络的原子特征网络, 结合提出的基于分子质心的位置编码, 学习不同原子及其相关联化学键的特征, 构建基于图结构的药物分子特征表示; 然后, 设计基于注意力机制的分子特征网络, 并通过监督和对比损失学习, 实现DDI预测; 最后, 通过实验证明该方法的有效性和优越性. 连续学习多个任务的能力对于通用人工智能的发展至关重要. 现有人工神经网络在单一任务上具有出色表现, 但在开放环境中依次面对不同任务时非常容易发生灾难性遗忘现象, 即联结主义模型在学习新任务时会迅速地忘记旧任务. 为了解决这个问题, 本文将随机权神经网络与生物大脑的相关工作机制联系起来, 提出了一种新的再可塑性启发的随机化网络(Metaplasticity-inspired randomized network, MRNet)用于类增量学习场景, 使得单一模型在不访问旧任务数据的情况下能够从未知的任务序列中学习与记忆融合. 首先, 以前馈方式构造了具有解析解的通用连续学习框架, 用于有效兼容新任务中出现的新类别; 然后, 基于突触可塑性设计了具备记忆功能的权值重要性矩阵, 自适应地调整网络参数以避免发生遗忘; 最后, 所提方法的有效性和高效性通过5个评价指标, 5个基准任务序列和10个比较方法在类增量学习场景中得到验证. 针对一类难以建立精确模型的单输入单输出(Single-input single-output, SISO) 非线性离散动态系统, 提出了一种数据驱动模型的自适应控制方法. 所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network, SCN), 建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型, 并采用增量学习方法与监督机制, 对模型结构与模型参数进行同步更新优化, 保证了数据驱动模型的无限逼近能力, 解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题. 进而利用直链部分与增强部分, 分别设计了线性控制器及虚拟未建模动态补偿器, 建立了基于SCN 数据驱动模型的自适应控制新方法, 分析了其稳定性与收敛性, 通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比, 实验结果表明所提方法的有效性. 序列推荐(Sequential recommendation, SR)旨在建模用户序列中的动态兴趣, 预测下一个行为. 现有基于知识蒸馏的多模型集成方法通常将教师模型预测的概率分布作为学生模型样本学习的软标签, 不利于关注低置信度序列样本中的动态兴趣. 提出了一种同伴知识互增强下的序列推荐方法(Sequential recommendation enhanced by peer knowledge, PeerRec), 使多个具有差异的同伴网络按照人类由易到难的认知过程进行两阶段的相互学习. 在第一阶段知识蒸馏的基础上, 第二阶段的刻意训练通过动态最小组策略协调多个同伴从低置信度样本中挖掘出可被加强训练的潜在样本. 然后, 受训的网络利用同伴对潜在样本预测的概率分布调节自身对该样本学习的权重, 从解空间中探索更优的兴趣表示. 三个公开数据集上的实验结果表明, 提出的PeerRec方法相比于最新的基线方法在基于Top-k的指标上不仅获得了更佳的推荐精度, 且具有良好的在线推荐效率. 纵向联邦学习是一种新兴的分布式机器学习技术, 在保障隐私性的前提下利用分散在各个机构的数据实现机器学习模型的联合训练. 纵向联邦学习被广泛应用于工业互联网金融借贷和医疗诊断等众多领域中, 因此保证其隐私安全性具有重要意义. 本文首先针对纵向联邦学习协议中由于参与方交换的嵌入表示造成的隐私泄露风险, 研究由协作者发起的通用的属性推断攻击. 攻击者利用辅助数据和嵌入表示训练一个攻击模型, 然后利用训练完成的攻击模型窃取参与方的隐私属性. 实验结果表明: 纵向联邦学习在训练、推理阶段产生的嵌入表示容易泄露数据隐私. 为了应对上述隐私泄露风险, 进一步提出一种基于最大最小策略的纵向联邦学习隐私保护方法, 其引入梯度正则组件保证训练过程主任务的预测性能, 同时引入重构组件掩藏参与方嵌入表示中包含的隐私属性信息. 最后, 在钢板缺陷诊断工业场景的实验结果表明: 相比于没有任何防御方法的VFL, 隐私保护方法将攻击推断准确度从95%降到55%以下, 接近于随机猜测的水平, 同时主任务预测准确率仅下降2%. 实际工业场景中, 需要在生产过程中收集大量测点的数据, 从而掌握生产过程运行状态. 传统的过程监测方法通常仅评估运行状态整体的异常与否, 或对运行状态进行分级评估, 这种方式并不会直接定位故障部位, 不利于故障的高效检修. 为此, 提出了一种基于全量测点估计的监测模型, 根据全量测点估计值与实际值的偏差定义监测指标, 从而实现全量测点的分别精准监测. 为了克服原有的基于工况估计的监测方法监测不全面且对测点间耦合关系建模不充分的问题, 提出了多核图卷积网络(Multi-kernel graph convolution network, MKGCN), 通过将全量传感器测点视为一张全量测点图, 显式地对测点间耦合关系进行建模, 从而实现了全量传感器测点的同步工况估计. 此外, 面向在线监测场景, 设计了基于特征逼近的自迭代方法, 从而克服了在异常情况下由于测点间强耦合导致的部分测点估计值异常的问题. 所提出的方法在电厂百万千瓦超超临界机组中引风机的实际数据上进行了验证, 结果显示, 提出的监测方法与其他典型方法相比能够更精准地检测出发生故障的测点. 如今智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,以仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统的运行优化调度,需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题.首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性,以系统日运行收益和一次能源利用率为优化目标构建了商业住宅区域综合能源系统多目标运行优化调度模型.其次由于传统多目标智能优化算法缺乏一种最优解综合评价方法,基于非支配排序以及拥挤度计算的多目标算法框架,提出了一种利用模糊一致矩阵选取全局最优解的多目标鲸鱼优化算法(AMOWOA),并将提出算法对商住区域综合能源系统多目标运行优化调度模型进行求解.最后以华东某商业住宅区域综合能源系统为例进行仿真,验证了该方法的有效性和可行性. 针对考虑外部海洋环境扰动和内部模型不确定性的多个欠驱动自主水下航行器, 研究了其在通信资源受限和机载能量受限下的协同路径跟踪控制问题. 首先, 针对水声通信信道窄造成的通信资源受限问题, 设计了一种基于事件触发机制的协同通信策略; 其次, 针对模型不确定性和海洋环境扰动问题, 设计了一种基于事件触发机制的线性扩张状态观测器来逼近水下航行器的未知动力学, 并降低了系统采样次数; 最后, 针对机载能量受限问题, 设计了一种基于事件触发机制的动力学控制律, 在保证控制精度的前提下降低了执行机构的动作频次, 从而节省了能量消耗. 应用级联系统稳定性分析方法, 分别证明了闭环系统是输入状态稳定的, 且系统不存在Zeno行为. 仿真结果验证了所提基于事件触发机制的多自主水下航行器协同路径跟踪控制方法的有效性. 产品质量与污染排放浓度等难测参数的实时检测是实现复杂工业过程优化控制的关键因素之一. 受限于检测技术难度、高时间与经济成本等原因, 难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题, 严重制约了数据驱动模型的泛化性能. 针对以上问题, 提出一种基于多目标粒子群优化混合优化的虚拟样本生成方法, 首先, 设计综合学习粒子群优化算法的种群表征机制, 使其能够同时编码用于映射模型超参数优化的连续变量和用于虚拟样本选择的离散变量; 然后, 定义具有多阶段多目标特性的综合学习粒子群优化算法适应度函数, 使其能够在确保模型泛化性能的同时最小化虚拟样本数量; 最后, 向虚拟样本生成多目标混合优化任务对综合学习粒子群优化算法进行改进, 使其能够适应虚拟样本优选过程的变维特性并提高优化过程的收敛速度. 同时, 首次借鉴度量学习的指标提出用于评价虚拟样本质量的综合评价指标和分布相似指标. 本文采用混凝土抗压强度和超导临界温度基准数据集验证了所提算法的合理性及有效性, 基于工业数据集构建了面向城市固废焚烧过程的二噁英排放浓度的软测量模型, 进一步验证了所提方法. 目前, 在带有视差场景的图像对齐中, 主要难点在某些无法找到足够匹配特征的区域, 这些区域称为匹配特征缺失区域. 现有算法往往忽略匹配特征缺失区域的对齐建模, 而只将有足够匹配特征区域中的部分单应变换系数(如相似性变换系数)传递给匹配特征缺失区域, 或者采用将匹配特征缺失区域转化为有足够匹配特征区域的间接方式, 因此对齐效果仍不理想. 在客观事实上, 位于相同平面的区域应该拥有相同的完整单应变换而非部分变换参数. 由此出发, 利用单应变换系数扩散的思想设计了一个二步网格优化的图像对齐算法. 该方法在第一步网格优化时获得有足够匹配特征区域的单应变换, 再基于提出的单应性扩散约束将这些单应变换系数扩散到邻域网格, 进行第二步网格优化, 在保证优化任务简洁高效的前提下实现单应变换系数的传播与图像对齐. 相较于现有的针对视差场景图像对齐算法, 所提方法在各项指标上都获得了更好的效果. 目前, 基于深度学习的超分辨算法已经取得了很好的性能. 但是这些方法通常具有较大的内存消耗和较高的计算复杂度, 很难应用到低算力或便携式设备上. 为了解决这一问题, 设计了一种轻量级的组-信息蒸馏残差网络用于快速且精确的单图像超分辨率. 具体来说, 提出一个更加有效的组-信息蒸馏模块, 作为网络特征提取基本块. 同时, 引入密集快捷连接对多个基本块进行组合, 构建组-信息蒸馏残差组, 捕获多层级信息和有效重利用特征. 另外, 还提出一个轻量的非对称残差Non-local模块对长距离依赖关系进行建模, 进一步提升超分的性能. 最后, 设计一个高频损失函数去解决像素损失带来图片细节平滑的问题. 大量的实验证明了该算法相较于其他先进方法, 可以在图像超分辨率性能和模型复杂度之间取得更好的平衡, 其在公开测试数据集B100上4倍超分速率达到56FPS, 比残差注意力网络快15倍. 长距离带式输送机是矿山、港口等领域运输散装物料的主要工具. 针对长距离带式输送机的安全节能运行问题, 本文研究数字孪生驱动的运行优化方法. 首先, 构建由数字孪生模型、模型同步算法、控制策略和现实带式输送机组成的数字孪生驱动运行优化框架; 然后, 建立数字孪生模型, 包括基于变质量牛顿第二定律和有限元分析法的输送带动力学模型、物料流动态模型和动态能耗模型; 最后, 提出数字孪生驱动的计算决策−仿真评估−优化校正优化决策方法, 优化带式输送机的稳态和暂态运行带速, 形成可行带速设定曲线. 实验表明, 数字孪生驱动的带式输送机运行优化方法可以实现带式输送机安全节能运行. 与传统控制方法相比, 能够根据运行工况实时调速, 提高输送带填充率, 节能13.87%. 近些年, 联邦学习由于能够打破数据壁垒, 实现孤岛数据价值变现, 受到了工业界和学术界的广泛关注. 然而, 在实际工程应用中, 联邦学习存在着数据隐私泄露和模型性能损失的问题. 对此, 首先对这两个问题进行了数学描述与分析. 然后, 提出了一种自适应模型聚合方案, 该方案能够设定各参与者的mini-batch值和自适应调整全局模型聚合间隔, 旨在保证模型精度的同时, 提高联邦学习训练效率. 并且, 混沌系统被首次引入联邦学习领域中, 用于构建一种基于混沌系统和同态加密的混合隐私保护方案, 从而进一步提升系统的隐私保护水平. 理论分析与实验结果表明, 提出的联邦学习算法能够保证参与者的数据隐私安全. 并且, 在非独立同分布数据的场景下, 该算法够在保证模型精度的前提下提高训练效率, 降低系统通信成本, 具备实际工业场景应用的可行性. 在社会网络中, Hegselmann-Krause模型描述了置信阈值内不同邻居对个体的观点影响权重都是相同的, 且邻居对个体的吸引力与他们的观点差值成正比, 这是不切实际的. 为了克服经典Hegselmann-Krause模型的不足, 提出了具有类万有引力的有界置信观点动力学模型, 描述个体观点的更新依赖于观点之间的差值和邻居的权威性, 且不同邻居对个体的观点影响权重不同. 根据置信矩阵的性质证明观点的收敛性, 并分析具有衰减置信阈值的观点动力学行为, 给出观点收敛速率的显式解. 最后, 利用本文提出的观点动力学模型研究社会心理学中的“权威效应”和“非零和效应”. 仿真分析表明, 邻居的权威性有利于观点达成一致. 针对轴承全寿命周期数据获取困难、训练样本少的问题, 提出一种基于关系网络的轴承剩余使用寿命(Remaining useful life,RUL)预测方法. 关系网络是一种基于度量的元学习方法, 在少量训练样本下, 具有快速学习新任务的优点. 设计了一种基于关系网络的轴承健康评估模型, 利用关系网络的嵌入模块提取轴承状态特征, 利用关系模块度量轴承状态特征之间的相似性, 基于相似性构建轴承健康指标;对健康指标进行Savitzky-golay滤波平滑处理, 降低振荡对预测结果的影响;最后利用线性函数对健康指标进行拟合, 得到轴承RUL预测值. 为验证所提方法的有效性, 在PHM2012轴承实测数据集上进行实验. 结果表明所得健康指标能够反映轴承的退化趋势, 所得RUL预测结果与ConvLSTM、Transformer、RNN、LSTM、Attention mechanism方法相比, 误差百分比分别减少了1.68%、3.41%、9.03%、13.72%、30.49%. 方法在少量训练样本的基础上可以取得较好的预测结果, 具有一定的应用价值. 现有大多数用于识别候选疾病基因的随机游走方法通常优先访问高度连接的基因, 而可能与已知疾病有关的不知名或连接性差的基因易被忽略或难以识别. 此外, 这些方法仅访问单个基因网络或各种基因数据的聚合网络, 导致偏差和不完整性. 因此, 设计一种能控制随机游走运动方向和整合多种数据源的候选疾病基因识别方法将是一个迫切需要解决的问题. 为此, 本文首先构建多层网络和多层异构基因网络. 然后, 提出了一种游走于多层和多层异构网络的拓扑偏置随机游走(Biased random walk with restart, BRWR)算法来识别疾病基因. 实验结果表明, 游走于不同类型网络上的识别候选疾病基因的BRWR算法优于现有的算法. 最后, 应用于多层异构网络上的BRWR算法能预测未诊断的新生儿类早衰综合征中涉及的疾病基因. 多重不确定性环境下的非线性系统辨识是一个开放问题.贝叶斯学习在描述、处理不确定性方面具有显著优势, 已在线性系统辨识方面得到广泛应用, 但在非线性系统辨识的应用较少, 面临概率估计复杂、计算量大等困难.本文针对上述问题, 以典型维纳非线性过程为对象, 提出基于随机变分贝叶斯的非线性系统辨识方法.首先对过程噪声、测量噪声以及参数不确定性进行概率描述;然后利用随机变分贝叶斯方法对模型参数进行后验估计.在估计过程中, 利用随机优化思想, 仅利用部分中间变量概率信息估计模型参数分布的自然梯度期望, 与利用所有中间变量概率信息估计模型参数比较, 显著降低了计算复杂性.该方法是首次在系统辨识领域中的应用.本文利用一个仿真实例和一个维纳模型的Benchmark问题, 证明了该方法在对大规模数据系统辨识时的有效性. 在城市固废焚烧过程中, 烟气含氧量是影响焚烧效果的重要工艺参数. 由于固废焚烧过程的复杂性, 实际应用过程中难以实现烟气含氧量的有效控制. 面向城市固废焚烧过程烟气含氧量控制的实际需求, 文中提出了一种基于数据驱动的烟气含氧量自适应预测控制方法. 首先, 采用自适应模糊C均值 (Fuzzy C-means, FCM) 算法辅助确定径向基函数 (Radial basis function, RBF) 神经网络隐含层神经元个数及初始中心, 建立基于FCM算法的RBF神经网络预测模型, 并在控制过程中通过自适应更新策略在线调节预测模型参数; 然后, 利用梯度下降算法求解控制律, 并基于李亚普诺夫理论分析了所提控制方法的稳定性; 最后, 基于城市固废焚烧厂实际数据, 验证了所提控制方法的有效性. 由于容易实施, 基于投影梯度的分布式在线优化模型逐渐成为一种主流的在线学习方法. 然而, 在处理大数据应用时, 投影步骤成为了该方法的计算瓶颈. 近年来, 研究者提出了面向凸代价函数的分布式在线条件梯度算法, 其悔界为 \begin{document}${\rm O}(T^{3/4})$\end{document} , 其中 \begin{document}$T$\end{document} 是一个时间范围. 该算法存在两方面的问题, 一是其悔界劣于公认的悔界 \begin{document}${\rm O}(\sqrt{T})$\end{document} ; 二是没有分析非凸代价函数的收敛性能, 而实际应用中代价函数大部分是非凸函数. 因此, 本文提出了一种基于条件梯度的加速分布式在线学习算法, 使用Frank-Wolfe 步骤替代投影步骤, 避免了昂贵的投影计算. 文中证明了当局部代价函数为凸函数时, 所提算法达到公认的悔界 \begin{document}${\rm O}(\sqrt{T})$\end{document} ; 当局部代价函数为潜在非凸函数时, 所提算法以速率 \begin{document}${\rm O}(\sqrt{T})$\end{document} 收敛到平稳点. 最后, 仿真实验验证了所提算法的性能与理论证明的结论. 考虑通信延时影响的车辆队列控制问题, 提出了一种基于观测器的分布式车辆队列纵向控制器. 首先, 基于分层控制策略分别设计上下层控制器, 通过上层控制器优化期望加速度, 下层控制器克服车辆模型非线性实现期望加速度和实际加速度的一致, 上层控制器设计过程中, 基于三阶线性化车辆模型, 考虑观测器、车辆动态耦合特性和通信延时, 提出一种通信延时环境下基于观测器的车辆队列控制器, 利用观测器估计领导车辆加速度信息从而减轻通信负担. 然后利用Lyapunov-Krasovskii方法分析了车辆队列的稳定性, 并得出了通信延时上界, 同时利用传递函数方法分析了串稳定性. 最后通过数值仿真验证上层控制器的有效性和稳定性, 在此基础上, 利用PreScan软件中高保真车辆动态模型, 验证了所提分层控制策略的有效性. 由于点云的非结构性和无序性, 目前已有的点云分类网络在精度上仍然需要进一步提高. 通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面, 本文构造了一个有效的点云分类网络. 首先, 针对点云的非结构性,通过学习中心点特征与近邻点特征之间的关系, 为不规则的近邻点分配不同的权重, 以此构建局部结构. 此外,使用注意力的思想, 提出了加权平均池化, 通过自注意力的方式, 学习每个高维特征的注意力分数, 在应对点云无序性的同时, 可以有效地聚合冗余的高维特征. 另外,利用了交叉熵损失与中心损失之间的互补关系, 提出了联合损失, 在增大类间距离的同时减小了类内距离, 进一步提高了网络的分类能力. 本文在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行了实验, 与目前性能最好的多个网络相比较, 验证了本文整体网络结构的优越性. 现实生活中的很多黑盒优化问题可归为高计算代价的多模态优化问题, 即昂贵多模态优化问题. 在处理该类问题时, 决策者希望以尽量少的计算代价(即尽量少的真实函数评价次数)找到多个高质量的最优解. 然而, 已有代理辅助的进化优化算法很少考虑问题的多模态属性, 运行一次仅可获得问题的一个最优解. 鉴于此, 研究一种异构集成代理辅助的区间多模态粒子群优化算法. 首先, 借助异构集成的思想构建一个由多个基础代理模型组成的模型池; 随后, 依据待评价粒子与已发现模态之间的匹配关系, 从模型池中自主选择部分基础代理模型进行集成, 并使用集成后的代理模型预测该粒子的适应值. 进一步, 为节约代理模型管理的代价, 设计一种增量式的代理模型管理策略; 为减少代理模型预测误差对算法性能的影响, 首次将区间排序关系引入到进化过程中. 将所提算法与当前流行的5种代理辅助进化优化算法和7 种经典的多模态优化算法进行对比, 在20个测试函数和1个建筑节能实际问题上的结果表明, 所提算法可以在较少计算代价下获得问题的多个高竞争最优解. 高精度时间同步是任务关键型工业网络控制系统的核心支撑技术, 针对工业环境中普遍存在周期性振动等扰动信号导致晶振频率漂移, 影响时间同步精度的问题, 本文基于扩展比例积分(Proportional Integral, \begin{document}$ \mathrm{P}\mathrm{I} $\end{document} )观测器, 提出了一种新型的抗扰补偿器结构, 用于消除周期性扰动的影响, 并构建了相应的精细抗干扰反馈控制方法, 用于实现高精度时间同步. 与传统的扰动观测器相比, 所提出的扩展 \begin{document}$ \mathrm{P}\mathrm{I} $\end{document} 抗扰补偿器克服了传统扰动观测器零点不变局限性, 提出了零点配置方法, 以充分利用闭环系统的传递函数矩阵(Transfer Function Matrix, TFM)在系统零点处降秩的特性, 实现了对于特定频率扰动信号的补偿作用. 并给出了所提出的控制器和抗扰补偿器的稳定性证明和控制器参数的稳定域. 通过基于实测参数的无线网络仿真实验, 验证了在 \begin{document}$ 5\mathrm{g} $\end{document} 周期性振动干扰下, 本文提出的方法明显优于传统滤波器和补偿器, 达到了同步误差在4 \begin{document}$ \mu s $\end{document} 以内, 实现了高精度时间同步. 本文针对智能车辆的高精度侧向控制问题, 提出了一种基于滚动时域强化学习(Receding horizon reinforcement learning, RHRL)的侧向控制方法. 车辆的侧向控制量由前馈和反馈两部分构成, 前馈控制量由参考路径的曲率以及动力学模型直接计算得出; 而反馈控制量通过采用滚动时域强化学习算法求解最优跟踪控制问题得到. 本文提出的方法结合滚动时域优化机制, 将无限时域最优控制问题转化为若干有限时域控制问题进行求解. 与已有的有限时域执行器-评价器学习不同, 在每个预测时域采用时间独立型执行器-评价器网络结构学习最优值函数和控制策略. 与模型预测控制(Model predictive control, MPC)方法求解开环控制序列不同, RHRL控制器的输出是一个显式状态反馈控制律, 兼具直接离线部署和在线学习部署的能力. 此外, 本文从理论上证明了RHRL算法在每个预测时域的收敛性, 并分析了闭环系统的稳定性. 在仿真环境中完成了结构化道路下的车辆侧向控制测试, 仿真结果表明提出的RHRL方法在控制性能方面优于预瞄控制器和启发式动态规划算法, 在计算效率方面优于MPC; 与最近流行的软执行器-评价器(Soft actor-critic, SAC)算法和深度确定性策略梯度(Deep deterministic policy gradient, DDPG)算法相比控制性能更好, 且具有更低的样本复杂度和更高的学习效率. 最后, 以红旗E-HS3电动汽车作为实车平台, 在封闭结构化城市测试道路和乡村起伏砂石道路下进行了侧向控制实验. 实验结果显示, RHRL在结构化城市道路中的侧向控制性能优于预瞄控制, 在乡村道路中具有较强的路面适应能力和较好的控制性能. 国内城市固废焚烧(Municipal solid waste incineration, MSWI)过程通常依靠运行专家观察炉内火焰识别燃烧状态后再结合自身经验修正控制策略以维持稳定燃烧, 存在智能化水平低、识别结果具有主观性与随意性等问题. 因MSWI过程的火焰图像具有强污染、多噪声等特性, 并且存在异常工况数据较为稀缺等问题, 导致传统目标识别方法难以适用. 对此, 本文提出了一种基于混合数据增强的MSWI过程燃烧状态识别方法. 首先, 结合领域专家经验与焚烧炉排结构对燃烧状态进行标定; 接着, 设计由粗调和精调两级组成的深度卷积生成对抗网络(Deep convolutional generative adversarial network, DCGAN)以获取多工况火焰图像; 然后, 采用弗雷歇距离(Fréchet inception distance, FID)对生成式样本进行自适应选择; 最后, 通过非生成式数据增强对样本进行再次扩充, 获得混合增强数据构建卷积神经网络以识别燃烧状态. 基于某MSWI电厂实际运行数据实验, 表明该方法有效地提高了识别网络的泛化性与鲁棒性, 具有良好的识别精度. 在超声辅助的骨科手术导航中, 需要从采集的超声图像序列中精确分割出骨结构, 并展示给医生, 来辅助医生进行术中决策. 但是, 图像噪声、成像伪影以及模糊的骨边界导致从超声图像序列中精确分割提取骨结构十分困难. 为解决该问题, 本文提出了一种新的基于序列注意力与局部相位引导的骨超声图像分割网络. 该网络一方面自适应地利用了超声序列帧之间的关系即序列注意力来辅助骨结构的语义分割. 另一方面, 该网络通过引入局部相位引导模块, 突出骨边缘信息, 进一步提高分割精度. 利用包含19050张图像的骨超声数据集, 进行了交叉实验、消融实验并与最新的超声骨分割方法进行了比较. 实验结果表明本文方法对骨结构分割精度高, 优于现有的超声骨分割方法. 染色体的分类识别是核型分析的重要任务之一. 因其柔软易弯曲, 且类间差异小、类内差异大等特点, 其精准分类已成为挑战性难题. 本文提出基于网格重构学习(GRid reConstruction learning, GRiCoL)的染色体分类模型. 该模型首先将染色体图像网格化, 提取局部分类特征; 再通过重构网络对全局特征进行二次提取, 最后完成分类. 相比于现有几种方法, GRiCoL同时兼顾局部和全局特征提取更有效的分类特征, 有效改善染色体弯曲导致的分类性能下降, 参数规模合理. 通过基于G带、荧光原位杂交、Q带染色体公开数据集的实验表明: GRiCoL能够更好地弱化染色体弯曲带来的影响, 在不同数据集上的分类准确度均优于现有分类方法. 已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示, 而当交互矩阵稀疏时, 推荐系统的精度较低, 推荐的结果缺乏可解释性. 本文考虑了用户-项目交互行为中的评分标签信息, 提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法, 并根据属性偏好对推荐结果进行了解释. 首先, 基于注意力机制分析了用户和项目属性信息与评分标签的关系, 建模了节点的属性偏好特征表示; 然后, 聚合了用户-项目交互矩阵中节点自身、交互邻居和评分标签信息, 通过图神经网络学习了节点的多阶交互行为特征表示; 最后, 融合了节点的属性偏好特征和交互行为特征, 在异质类型信息空间下学习了用户和项目的语义特征表示, 利用多层感知机实现了评分预测, 并在MovieLens和Douban数据集上验证了方法的有效性. 实验结果表明, 本文方法在MAE和RMSE指标上有效提高了推荐系统的精度, 缓解了数据稀疏场景下推荐模型性能较低的问题, 提升了推荐结果的可解释性. 高速公路无人驾驶轨迹规划面临着实时性强、安全性高的挑战. 本文提出了一种分层抽样多动态窗口的轨迹规划算法(Stratied sampling based multi-dynamic window trajectory planner, SMWTP). 首先, 用多动态窗口表征可行轨迹的搜索空间, 并基于贝叶斯网络构建了车辆轨迹分布模型. 其次, 采用先速度后路径的分层抽样策略生成符合动态场景约束的候选轨迹集合. 最后, 利用引入障碍车辆速度估计不确定性的责任敏感安全模型(Responsibility sensitive safety, RSS)从中选择最优轨迹. 大量仿真实验和实际交通场景测试验证了算法的有效性, 对比实验结果表明所提算法性能显著优于人工势场最优轨迹规划算法和多动态窗口模拟退火轨迹规划算法. 本文针对光伏-电池-超级电容直流微电网系统中光伏发电间歇性造成的功率失配, 提出了一种基于事件触发的无差拍预测控制(Event-triggered deadbeat predictive control, ETDPC)方法, 实现有效的能量管理. ETDPC控制方法结合事件触发控制策略和无差拍预测控制策略的优点, 该方法根据微电网的拓扑结构构建状态空间模型, 用于设计适用于微电网能量管理的触发条件: 当ETDPC的触发条件满足时, ETDPC中无差拍预测控制模块被激活, 可以在一个控制周期内产生最优控制信号, 实现对于扰动的快速响应, 减小母线电压纹波; 当系统状态不满足ETDPC中的触发条件时, 无差拍预测控制模块被挂起, 从而消除非必要运算, 以减轻实现能量管理的运算负担. 因此, 基于电池-超级电容器混合储能系统, ETDPC控制能够缓解间歇性光伏发电同负荷需求之间的功率失衡, 以稳定母线电压. 最后, 数字仿真和硬件在环实验结果表明, 相较于传统事件触发无差拍控制方法, 运算负担减小了50.63%, 母线电压纹波小于0.73%, 验证了ETDPC控制方法的有效性与性能优势, 为直流微电网的能量管理提供了一种参考. 张量主成分分析(Tensor principle component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究, 采用 \begin{document}$\textit{F}$\end{document} 范数平方作为低维投影的距离度量方式, 表征含离群数据和噪声图像的鲁棒性较弱. \begin{document}$\textit{L}_{1}$\end{document} 范数能够抑制噪声的影响, 但所获的低维投影数据缺乏重构误差约束, 其局部表征能力也较弱. 针对上述问题, 本文利用 \begin{document}$\textit{F}$\end{document} 范数作为目标函数的距离度量方式, 提出一种基于 \begin{document}$\textit{F}$\end{document} 范数的分块张量主成分分析算法(Block TPCA with \begin{document}$\textit{F}$\end{document} -norm, BlockTPCA- \begin{document}$\textit{F}$\end{document} ), 提高张量低维表征的鲁棒性. 考虑到同时约束投影距离与重构误差, 提出一种基于比例 \begin{document}$\textit{F}$\end{document} 范数的分块张量主成分分析算法(Block TPCA with proportional \begin{document}$\textit{F}$\end{document} -norm, BlockTPCA-P \begin{document}$\textit{F}$\end{document} ), 其最大化投影距离与最小化重构误差均得到了优化. 然后, 给出了其贪婪的求解算法, 并对其收敛性进行了理论证明. 最后, 对包含不同噪声块和具有实际遮挡的彩色人脸数据集进行实验, 结果表明, 本文所提算法在平均重构误差、图像重构与分类率等方面均得到了明显提升, 在张量低维表征中具有较强的鲁棒性. 目标跟踪中基于IoU (Intersection over union, IoU)预测的尺度估计方法, 通过估计视频帧中候选框与真实目标框的重叠度训练尺度回归模型, 推理阶段通过最大化IoU对初始化边界框进行微调, 取得目标的尺度. 本文详细分析了基于IoU预测的尺度估计模型的梯度更新过程, 发现其在训练和推理过程仅将IoU作为度量, 缺乏对预测框和真实目标框中心点距离的约束, 导致外观模型更新过程中模板受到污染, 前景和背景分类时定位出现偏差. 基于此发现, 本文构建了一种结合IoU和中心点距离的新度量NDIoU (Normalization distance IoU), 在此基础上提出一种新的尺度估计方法, 并将其嵌入判别式跟踪框架. 即在训练阶段以NDIoU为标签, 设计了具有中心点距离约束的损失函数监督网络的学习, 在线推理期间通过最大化NDIoU微调目标尺度, 以帮助外观模型更新时获得更加准确的样本. 在七个数据上与相关主流方法进行对比, 本文方法在七个数据集上的综合性能优于所有对比算法. 特别是在GOT-10k数据集上, 本文方法的AO、 \begin{document}$ S{R}_{0.5} $\end{document} \begin{document}$ S{R}_{0.75} $\end{document} 三个指标达到了65.4%、78.7%和53.4%, 分别超过基线模型4.3%、7.0%和4.2%. This paper investigates an adaptive fuzzy tracking control method for a class of nonlinear systems with external disturbances. Firstly, fuzzy logic systems and the fuzzy state observer are implemented to approximate unknown nonlinear functions and estimate the unmeasured states of systems, respectively. Then, the tracking error can be constrained within the specified range by means of the performance function. Furthermore, an event-triggered adaptive fuzzy controller is designed by employing the backstepping method and Lyapunov functional with logarithm function. The proposed control strategy can ensure that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded based on the Lyapunov stability theory and the properties of \begin{document}$\tanh$\end{document} function. Finally, a numerical simulation example is provided to verify the effectiveness of proposed method. 在显著性目标检测网络的设计中, U型结构使用广泛. 但是U型结构显著性检测方法中普遍存在空间位置细节丢失和边缘难以细化的问题, 针对这些问题, 本文提出了一个基于语义信息引导特征聚合的网络, 通过高效的特征聚合来获得精细的显著性图. 网络由3部分组成, 分别是混合注意力模块, 增大感受野模块以及多层次聚合模块. 首先, 利用增大感受野模块处理特征提取网络提取出的低层特征, 使其在保留原有边缘细节的同时增大感受野, 以获得更加丰富的空间上下文信息. 然后, 利用混合注意力模块处理特征提取网络的最后一层特征, 以增强其表征力, 并作为解码过程中的语义指导, 不断指导特征聚合. 最后, 多层次聚合模块对来自不同层次的特征进行有效聚合, 得到最终精细的显著性图. 本文在6个基准数据集上进行了广泛的实验, 结果证明了该方法能够有效的定位显著特征, 并且对边缘细节的细化也很有效. 针对现有图像去雾方法因空间上下文信息丢失而无法准确估计大尺度目标特征, 导致图像结构被破坏或去雾不彻底等问题, 本文提出了一种基于误差回传机制的多尺度去雾网络. 网络由误差回传多尺度去雾群组(Error-backward Multi-scale Dehazing Group, EMDG)、门控融合模块和优化模块组成. 其中EMDG包括误差回传模块和雾霾感知单元, 误差回传模块度量相邻尺度网络特征图之间的差异, 并将生成的差值图回传至上一尺度, 实现对结构信息和上下文信息的有效复用; 雾霾感知单元是各尺度子网络的核心, 其由残差密集块和雾浓度自适应检测块组成, 可充分提取局部信息并能够根据雾浓度实现自适应去雾. 不同于已有融合方法直接堆叠各尺度特征, 提出的门控融合模块逐像素学习每个子网络特征图对应的最优权重, 有效避免了干扰信息对图像结构和细节信息的破坏. 再经优化模块, 可得最终的无雾图像. 在合成数据集和真实数据集上的大量实验表明, 本文方法优于目前的主流去雾方法, 尤其是对远景雾气去除效果更佳. 事件相机对场景的亮度变化进行成像, 输出异步的事件流, 具有极低的延时, 受运动模糊问题影响较少. 因此, 可以利用事件相机解决高速运动场景下的光流估计问题. 本文基于亮度恒定假设和事件产生模型, 利用事件相机输出事件流的低延时性质, 融合存在运动模糊的亮度图像帧, 提出了基于事件相机的连续光流估计算法, 提升了高速运动场景下的光流估计精度. 实验结果表明, 相比于现有的基于事件相机的光流估计算法, 本文提出的算法在平均端点误差(AEE)、平均角度误差(AAE)和均方误差(MSE)三个指标上分别提升11%、45% 和8%. 在高速运动场景下, 本文的算法能够准确重建出高速运动目标的连续光流, 从而保证了存在运动模糊情况时光流估计的精度. 首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升. 针对黑猩猩优化算法(Chimp optimization algorithm, ChOA)存在收敛速度慢、精度低和易陷入局部最优值的问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想更新个体位置, 提高算法对于局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性, 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性. 针对当前过程监测和运行状态评价方法等对工况信息感知不全面, 漏报和误报现象严重等问题, 本文在深入研究工业现场数据静-动态特性协同感知方法的基础上, 提出综合经济指标驱动的慢特征分析算法. 将综合经济指标信息融入至慢特征分析中, 协同感知复杂工业过程的静-动态特性变化, 并进一步通过计算潜变量之间的相似度及其一阶差分之间的相似度实现对过程稳态和过渡的评价, 在此基础上建立了基于静-动态特性协同感知的过程运行状态评价统一框架. 针对非优状态, 提出了基于稀疏学习的非优因素识别方法, 实现对非优因素变量的准确识别. 最后, 通过重介质选煤过程实际生产数据和田纳西·伊斯曼过程数据验证了所提方法的有效性. 餐前胰岛素剂量精准决策是改善糖尿病患者血糖管理的关键. 临床治疗中胰岛素剂量调整一般在较短时间内完成, 具有典型的小样本特征; 数据驱动建模在该情形下无法准确学习患者餐后血糖代谢规律, 难以确保胰岛素剂量的安全、有效决策. 针对这一问题, 本文设计了一种临床经验辅助的餐前胰岛素剂量自适应优化决策框架, 构建高斯过程血糖预测模型和模型有效性在线评估机制, 提出基于历史剂量和临床经验决策约束的贝叶斯优化方法, 实现小样本下餐后血糖轨迹的安全预测和餐前胰岛素注射剂量的优化决策. 该方法的安全性和有效性通过美国食品药品监督管理局(Food and drug administration, FDA)接受的UVA/Padova T1DM平台测试结果和1型糖尿病患者实际临床数据决策结果充分验证. 本文工作可为餐前胰岛素剂量智能决策及临床试验提供方法基础和技术支持, 也为我国糖尿病患者血糖管理水平的有效改善提供精准医学治疗手段. 针对非刚性运动和大位移场景下运动遮挡检测的准确性与鲁棒性问题, 本文提出一种基于光流与多尺度上下文的图像序列运动遮挡检测方法. 首先, 设计基于扩张卷积的多尺度上下文信息聚合网络, 通过图像序列多尺度上下文信息获取更大范围的图像特征; 然后, 采用特征金字塔构建基于多尺度上下文与光流的端到端运动遮挡检测网络模型, 利用光流优化非刚性运动和大位移区域的运动遮挡信息; 最后, 构造基于运动边缘的网络模型训练损失函数, 获取准确的运动遮挡边界. 分别采用MPI-Sintel和KITTI测试数据集对本文方法与现有的代表性遮挡检测模型进行实验对比与分析. 实验结果表明, 本文方法能够有效提高运动遮挡检测的准确性, 尤其在非刚性运动和大位移等困难场景下具有更好的遮挡检测鲁棒性. 针对一类四旋翼飞行器吊挂飞行系统的负载摆动抑制和轨迹跟踪精确控制的问题, 考虑系统存在未知外界扰动和模型动态不确定的情况, 提出了一种基于扩张状态观测器(Extended state observer, ESO)的吊挂负载摆动抑制的非线性轨迹跟踪控制方法. 本文将四旋翼吊挂飞行系统分解为姿态, 位置和负载摆动控制三个动态子系统, 分别设计非线性控制器实现欠驱动约束下的解耦控制; 设计了一种扩张状态观测器, 用以估计和补偿四旋翼与吊挂负载耦合飞行的未知外界扰动与模型动态不确定性, 并证明了闭环系统的稳定性, 跟踪误差及吊挂负载摆动所有信号的一致最终有界. 最后利用Quanser公司的QBall2飞行器进行三维空间螺旋轨迹的跟踪控制, 仿真结果验证了未知干扰下基于扩张状态观测器的四旋翼吊挂飞行非线性控制的有效性和优越性, 实现了四旋翼吊挂系统轨迹跟踪的精确控制和飞行过程中负载摆动的快速抑制. 无人艇作为一种具有广泛应用前景的无人系统, 其自主决策能力尤为关键. 由于水面运动环境较为开阔, 传统避障决策算法难以在量化规则下自主规划最优路线, 而一般强化学习方法在大范围复杂环境下难以快速收敛. 针对这些问题, 本文提出一种基于阈值的深度Q网络(Threshold deep Q network, T-DQN)避障算法, 在深度Q网络(Deep Q network, DQN)基础上增加长短期记忆(Long short term memory, LSTM)网络来保存训练信息, 并设定经验回放池阈值加速算法的收敛. 通过在不同尺度的栅格环境中进行实验仿真, 其结果表明所提出的T-DQN算法能快速地收敛到最优路径, 其整体收敛步数相比Q-Learning算法, DQN算法分别减少69.1 %与24.8 %, 引入的阈值筛选机制使整体收敛步数降低41.1 %. 在Unity 3D强化学习仿真平台中验证了复杂地图场景下的避障任务完成情况, 实验结果表明, 该算法能实现无人艇的精细化避障和智能安全行驶. 动态多目标优化问题的目标函数发生变化时, 需要采取变化响应策略对种群进行重新初始化, 以快速追踪新环境中的最优解集. 现有动态多目标优化算法对不同个体不同维度的决策变量缺乏针对性的变化响应, 导致重新初始化的效果尚存在较大改进空间. 为此, 本文提出了一种对不同个体不同维度的决策变量分别进行自适应变化响应的动态多目标进化算法(DMOEA-ACR). 该算法包括两个核心部分, 首先是对 t 时间步最优种群和 t −1时间步最优种群中对应个体各维度决策变量之间的差异进行计算, 自适应选择变异策略或预测策略重新初始化不同个体不同维度的决策变量. 其次, 在每轮迭代或重新初始化后, 对非支配个体进行存档, 基于存档中心构建预测策略. 为了验证DMOEA-ACR的有效性, 将其与动态多目标优化领域的6种先进算法在最新测试问题集SDP和DF上进行对比, 实验结果表明DMOEA-ACR在求解动态多目标优化问题时具有明显的优势. 在最优控制信号中加入编码信号是实现信息物理系统重放攻击检测的有效方法, 但会造成系统控制性能的损失. 如何在保证重放攻击检测率条件下降低系统的控制性能损失是一个值得研究的问题. 本文提出了一种基于辅助信息补偿的控制信号编码检测方法, 通过向测量值添加辅助信号补偿控制编码信号对最优状态估计的影响. 首先, 论文证明了此方案下重放攻击的可检测性, 导出了检测率的上界和检测函数阈值间的定量关系. 其次证明了加入辅助信号后系统控制信号与未添加编码信息时相同, 之前时刻的控制编码信号不会造成累积效应. 因此系统当前时刻的控制性能损失仅与当前时刻编码信号的大小有关. 最后, 将编码信号的协方差矩阵, 检测率和检测阈值之间的关系表示成一个最优化问题, 给出了编码信号方差的计算方法. 仿真结果表明, 本文方法能有效地检测重放攻击的发生, 且系统控制的性能损失较小. 针对厚尾噪声条件下不规则星凸形多扩展目标跟踪问题, 本文提出了一种基于多伯努利滤波的厚尾噪声条件下多扩展目标跟踪方法. 首先, 采用学生t分布对厚尾过程噪声和量测噪声进行建模, 并基于有限集统计理论(Finite set statistics, FISST)利用随机超曲面模型(Random matrix model, RHM)建立不规则星凸形多扩展目标的跟踪滤波模型. 然后, 利用学生t混合(Student's t mixture, STM)模型来表征多伯努利密度, 提出学生t混合多扩展目标多伯努利滤波算法, 并进一步基于鲁棒学生t容积滤波算法提出了非线性鲁棒学生t混合星凸形多扩展目标多伯努利滤波算法. 最后, 通过构造厚尾噪声条件下星凸形多扩展目标和多群目标的跟踪仿真实验验证了所提方法的有效性. 双目深度估计的在线适应是一个有挑战性的问题, 其要求模型能够在不断变化的目标场景中在线连续地自我调整并适应于当前环境. 为处理该问题, 本文提出了一种新的在线元学习适应算法(Online meta-learning model with adaptation, OMLA), 其贡献主要体现在两方面: 首先引入在线特征对齐方法处理目标域和源域特征的分布偏差, 以减少数据域转移的影响, 然后利用在线元学习方法调整特征对齐过程和网络权重, 使模型实现快速收敛.此外, 本文提出了一种新的基于元学习的预训练方法, 以获得适用于在线学习场景的深度网络参数, 相关实验分析表明, OMLA和元学习预训练算法均能帮助模型快速适应于新场景, 在KITTI数据集上的实验对比表明, 本文方法的效果超越了当前最佳的在线适应算法, 接近甚至优于在目标域离线训练的理想模型. 当前的深度卷积神经网络方法, 在视频超分辨率任务上实现的性能提升相对于图像超分辨率任务略低一些, 部分原因是它们对层次结构特征中的某些关键帧间信息的利用不够充分. 为此, 本文提出了一个称作层次特征复用网络(Hierarchical feature reuse network, HFRNet)的结构, 用以解决上述问题. 该网络保留运动补偿帧的低频内容, 并采用密集层次特征块(Dense hierarchical feature block, DHFB)自适应地融合其内部每个残差块的特征, 之后用长距离特征复用融合多个DHFB间的特征, 从而促进高频细节信息的恢复. 实验结果表明, 本文提出的方法在定量和定性指标上均优于当前的方法. 宽度学习系统(Broad learning system, BLS)作为一种基于随机向量函数型网络(Random vector functional link network, RVFLN)的高效增量学习系统, 具有快速自适应模型结构选择能力和高精度的特点. 但针对目标分类任务中有标签数据匮乏问题, 传统的BLS难以借助相关领域知识来提升目标域的分类效果, 为此本文提出一种基于流形正则化框架和最大均值差异(Maximum mean discrepancy, MMD)的域适应BLS(DABLS)模型, 实现目标域无标签条件下的跨域图像分类. DABLS模型首先构造BLS的特征节点和增强节点, 从源域和目标域数据中有效提取特征; 再利用流形正则化框架构造拉普拉斯矩阵, 以探索目标域数据中的流形特性, 挖掘目标域数据的潜在信息. 接着基于迁移学习方法构建源域数据与目标域数据之间的MMD惩罚项, 以匹配源域和目标域之间的投影均值; 将特征节点、增强节点、MMD惩罚项和目标域拉普拉斯矩阵相结合, 构造目标函数, 并采用岭回归分析法对其求解, 获得输出系数, 从而提高模型的跨域分类性能. 最后在不同图像数据集上进行大量的验证与对比实验, 结果表明DABLS在不同图像数据集上均能获得较好的跨域分类性能, 具有较强的泛化能力和较好的稳定性. 针对任意初始状态下机械臂轨迹跟踪问题, 本文提出一种变长度误差跟踪迭代学习控制方法. 首先, 构造不依赖于期望轨迹的双曲余弦型期望误差轨迹, 放宽经典迭代学习控制的初始状态要求严格一致条件. 由于该误差轨迹只需设置一个常数项, 因而能够有效减少计算量, 使得期望误差轨迹的设计更为简单. 其次, 考虑机械臂运行区间随迭代次数变化的问题, 构建虚拟误差变量补偿机制, 通过定义虚拟误差变量对未运行区间进行信息补偿, 放宽经典迭代学习控制的迭代长度不变条件. 在此基础上, 基于Lyapunov-like理论设计迭代学习控制器和全限幅学习律, 实现机械臂关节位置在指定区间上跟踪给定的期望轨迹和保证未知参数估计值的有界性. 最后, 仿真结果验证了本文所提方法的有效性. 针对城市污水处理过程的非线性, 不确定性以及非高斯等特点, 提出一种基于数据驱动的溶解氧浓度在线自组织控制方法. 首先, 设计了一种基于相关熵的自组织模糊神经网络控制器(Correntropy-based self-organizing fuzzy neural network, CSOFNN), 采用相关熵与规则贡献度指标实现控制器结构与参数的自动构建或修剪. 其次, 设计了基于相关熵诱导准则的补偿控制器及参数自适应律, 充分利用了相关熵抑制非高斯噪声的能力, 能够有效地降低系统中的不确定性. 然后, 分析了所提出的控制方法的稳定性, 从而保证其在实际应用中的可靠性. 最后, 基于基准仿真1号模型的实验验证了所提方法的有效性. 正电子发射断层成像(Positron emission tomography, PET)是一种强大的核医学功能成像模式, 广泛地应用于临床诊断, 但PET图像的空间分辨率低且含有噪声, 有必要对PET图像进行去噪来提升PET图像的质量. 随着PET/MR等一体化成像设备的出现, 磁共振成像(Magnetic resonance imaging, MRI)的先验信息可用于PET图像去噪, 提高PET图像质量. 针对动态PET图像, 提出了一种融合MRI先验信息的PET图像图小波去噪新方法. 首先构建PET合成图像; 再将PET合成图像与MRI信息通过硬阈值方法进行融合; 接着在融合图像上构造图拉普拉斯矩阵; 最后通过图小波变换对动态PET图像去噪. 仿真实验结果表明, 与单独的图滤波、图小波去噪方法, 以及其他结合MRI的PET图像去噪方法相比, 本文方法有更高的信噪比, 更好地保留了病灶信息; 本文方法的去噪性能与VGG深度神经网络等基于学习的方法相当, 但不需要大量数据的训练, 计算复杂度低. 针对异常水声测距信息对多自主水下航行器(Autonomous underwater vehicles, AUV)协同定位系统的影响, 以及传统故障检测方法在多水声测距信息交替混淆的情况下检测效率低的问题, 本文提出了一种基于自适应神经模糊推理系统(Adaptive neuro-fuzzy inference system, ANFIS)的量测异常检测方法. 首先, 分别建立与各水声测距系统相对应的ANFIS模型; 然后, 通过自适应容积卡尔曼滤波和马氏距离构造能够反映量测异常的特征信息作为ANFIS的输入, 并基于预定义的量测异常信息建立初始混合数据库, 训练ANFIS模型实现对量测异常的在线实时检测与隔离. 最后, 利用湖水试验数据进行了AUV协同定位仿真验证, 实验结果表明该方法可以准确识别异常水声测距信息, 与传统故障检测方法相比误报率与漏检率均减少70%以上. 针对实际中某种工况滚动轴承带标签振动数据获取困难, 健康指标难以构建及寿命预测误差大的问题, 提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命预测方法. 该方法首先对滚动轴承全寿命周期振动数据提取均方根特征, 并引入新的自下而上时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态; 对振动信号经快速傅里叶变换后的幅值序列进行状态信息标记, 并将其输入到新增卷积层的全卷积神经网络中, 提取深层特征, 得到预训练模型; 提出将预训练模型的梯度作为一种“特征”与传统预训练模型特征一起参与目标域网络训练过程, 从而得到状态识别模型; 利用状态概率估计法结合状态识别模型建立滚动轴承寿命预测模型. 实验验证, 所提方法无需构建健康指标, 可实现无监督条件下不同工况滚动轴承剩余寿命预测, 并获得较好的效果. 面向用户生成内容的进化搜索在大数据及个性化服务领域已引起广泛关注, 其关键在于基于多源异构用户生成内容构建用户认知偏好模型, 进而设计高效的进化搜索机制. 针对此, 本文提出了融合注意力机制的受 限玻尔兹曼机偏好认知代理模型构建机制, 并应用于交互式分布估计算法, 设计含用户生成内容的个性化进化搜索策略. 基于用户群体提供的文本评论, 以及搜索物品的类别文本, 构建无监督受限玻尔兹曼机模型提取广义特征; 设计注意力机制, 融合广义特征, 获取对用户认知偏好高度相关特征的集成; 利用该特征再次训练受限玻尔兹曼机, 实现对用户偏好认知代理模型的构建; 根据用户偏好认知代理模型, 给出交互式分布估计算法概率更新模型以及物品适应度评价函数, 实现物品个性化进化搜索. 算法在亚马逊个性化搜索实例的应用验证了用户认知偏好模型的可靠性, 以及个性化进化搜索的有效性. 现有研究表明深度学习模型容易受到精心设计的对抗样本攻击, 从而导致模型给出错误的推理结果, 引发潜在的安全威胁. 已有较多有效的防御方法, 其中大多数针对特定攻击方法具有较好防御效果, 但由于实际应用中无法预知攻击者可能采用的攻击策略, 因此提出不依赖攻击方法的通用防御方法是一个挑战. 本文提出了一种基于通用逆扰动的对抗样本防御方法, 通过学习原始数据集中的类相关主要特征, 生成通用逆扰动(Universal Inverse Perturbation, UIP), 且UIP对数据样本和攻击方法都具有通用性, 即一个UIP可以实现对不同攻击方法作用于整个数据集得到的所有对样本进行防御. 此外, UIP通过强化良性样本的类相关重要特征实现对良性样本精度的无影响, 且生成UIP无需对抗样本的先验知识. 通过大量实验验证, 表明UIP在不同数据集、不同模型中对各类攻击方法都具备显著的防御效果, 且提升了模型对正常样本的分类性能. 模糊图像的超分辨率重建具有挑战性并且有重要的实用价值. 本文提出了一种基于模糊核估计的图像盲超分辨率神经网络, 主要包括两部分: 模糊核估计子网络和模糊核自适应的图像重建子网络. 给定任意低分辨率图像, 该网络首先利用模糊核估计子网络从输入图像估计出实际的模糊核, 然后根据估计到的模糊核, 该网络利用模糊核自适应的图像重建子网络完成输入图像的超分辨率重建. 与其他图像盲超分辨率方法不同, 本文提出的模糊核估计子网络能够显式地从输入低分辨率图像中估计出完整的模糊核, 然后模糊核自适应的图像重建子网络根据估计到的模糊核, 动态地调整网络各层的图像特征, 从而适应不同输入图像的模糊. 本文在多个基准数据集上进行了有效性实验, 定性和定量的结果都表明该网络优于同类的图像盲超分辨率神经网络. 本文针对轧机机电液垂扭耦合系统存在耦合振动问题, 提出了一种基于耦合反步法的轧机垂扭耦合振动抑制控制策略. 首先考虑了轧机传动系统、液压系统与辊系机械间的相互影响, 根据动力学定理, 建立了轧机机电液垂扭耦合振动数学模型. 其次考虑到轧机耦合垂振系统和耦合扭振系统间存在状态耦合关系, 利用耦合反步法, 解决了振动控制器设计中存在的相互嵌套问题. 针对耦合系统输出性能受限问题, 借助于障碍李雅普诺夫函数方法, 同时利用神经网络来逼近未知非线性函数, 设计了自适应神经网络振动抑制控制策略. 基于李雅普诺夫稳定理论严格证明了本文设计的控制方法能够保证系统输出满足所要求的暂稳态性能指标. 最后, 根据650 mm轧机的实际数据进行仿真, 验证了本文设计控制策略的有效性与优越性. 针对利用平面特征计算RGB-D相机位姿时的求解退化问题, 提出平面和直线融合的RGB-D视觉里程计(Plane-line-based RGB-D visual odometry, PLVO). 首先, 提出基于平面-直线混合关联图(Plane-line hybrid association graph, PLHAG)的多特征关联方法, 充分考虑平面和平面、平面和直线之间的几何关系, 对平面和直线两类几何特征进行一体化关联. 然后, 提出基于平面和直线主辅相济、自适应融合的RGB-D相机位姿估计方法. 具体来说, 鉴于平面特征通常比直线特征具有更好的准确性和稳定性, 本文通过自适应加权的方法, 确保平面特征在位姿计算中的主导作用, 而对平面无法约束的位姿自由度, 利用直线特征进行补充, 从而实现两类特征的融合, 解决了单纯使用平面特征求解位姿时的退化问题. 最后, 通过公开数据集上的定量实验以及真实室内环境下的机器人实验, 验证了所提出方法的有效性.

共识算法作为区块链底层关键技术, 可解决决策权分散的分布式系统中的一致性难题. 良好的共识算法可提升系统健壮性, 但大多数方案在网络故障或主动攻击下存在鲁棒性不可控、活性表现差、可扩展性不足等问题. 针对上述问题, 本文提出一种抗自适应攻击的健壮拜占庭容错共识算法. 该算法利用环签名的无条件强匿名性构造排序选主算法, 隐匿选举每一轮共识中的提案者, 进而达到模糊敌手攻击对象、有效抵抗自适应攻击的目的. 同时, 通过在多轮投票中合成代表法定人数投票意愿的门限签名, 将网络划分为众多最小连通性网络, 以保证在最小连通性网络环境中实现低延迟、高鲁棒性的拜占庭容错共识算法. 分析表明, 系统在提升可扩展性、减少视图更换、降低签名验证开销的同时, 能够有效保证系统活性.

网络入侵样本数据特征间存在未知的非欧式空间图结构关系, 深入挖掘并利用该关系可有效提升网络入侵检测方法的检测效能. 对此, 本文设计了一种元图神经网络(Meta graph neural network, MGNN), MGNN能够对样本数据特征内部隐藏的图结构关系进行挖掘与利用, 在应对入侵检测问题时优势明显. 首先, 设计了元图网络层MGNL, 挖掘出样本数据特征内部隐藏的图结构关系, 并利用该关系对样本数据的原始特征进行更新; 然后, 针对MGNN存在的图信息传播过程中父代信息湮灭现象提出反信息湮灭策略, 并设计了注意力损失函数, 简化MGNN中实现注意力机制的运算过程. KDD-NSL、UNSW-NB15、CICDoS2019数据集上的实验表明, 与经典深度学习算法DNN、CNN、RNN、LSTM和传统机器学习算法SVM、DT、RF、KNN、LR相比MGNN在准确率、F1值、精确率、召回率评价指标上均具有良好效果. 在大多数系统辨识方法中, 通常假设时变时滞在其可能的取值范围内服从均匀分布. 但是这种假设是非常受限的并且在实际过程中常常无法得到满足. 因此本文在时滞取值概率条件未知的情况下, 针对一类线性时变时滞系统提出有效的辨识方法. 利用期望最大化算法将拟研究的辨识问题公式化, 期望最大化算法通过不断地迭代执行期望步骤和最大化步骤来得到优化的参数估计. 在期望步骤中, 将未知的时变时滞当作隐含变量来处理并且假设它可能的取值范围已知. 在每一个采样时刻, 时滞的变换由一个概率向量控制, 并且该向量中的每一个元素是未知的, 将其当作待估计的未知参数处理. 在算法的每次迭代过程中, 计算时滞的后验概率密度函数并在此基础上构造代价函数(Q-函数). 在最大化步骤中, 通过不断优化(Q-函数)来估计想要的参数, 包括: 模型参数、噪声参数、控制概率向量中的每一个元素和未知的时滞. 最后通过一个数值例子来验证本文提出的算法的有效性. 复杂多变的战场环境要求后装保障能够根据战场环境变化, 预见性地做出决策, 为此提出了基于强化学习的动态调度方法. 为了准确描述保障调度问题, 提出了支持抢占调度、重分配及重部署决策的马尔可夫决策过程模型, 模型中综合考量了任务排队、保障优先级以及油料约束等诸多问题的影响; 随后设计了改进策略迭代算法, 训练基于神经网络的保障调度模型; 训练后的神经网络模型能够近似计算状态价值函数, 从而求解出产生最大期望价值的优化调度策略. 最后设计了一个分布式战场保障仿真实验, 通过与常规调度策略的对比, 验证了动态调度算法具有良好的自适应性和自主学习能力, 能够根据历史数据和当前态势预判后续变化, 并重新规划和配置保障资源的调度方案. 针对机器人摄影测量中离线规划受初始位姿标定影响的问题, 提出融合初始位姿估计的机器人摄影测量系统视点规划方法. 首先构建基于YOLO的深度学习网络估计被测对象3D包围盒, 利用PNP算法快速求解对象姿态; 然后随机生成机器人无奇异无碰撞的视点, 基于相机成像的2D-3D正逆性映射, 根据深度原则计算每个视角下目标可见性矩阵; 最后, 引入熵权法, 以最小化重建信息熵为目标建立优化模型, 并基于TSP模型规划机器人路径. 结果表明: 利用深度学习估计的平移误差低于5 mm, 角度误差低于2°. 考虑熵权的视点规划方法提高了摄影测量质量, 融合深度学习初始姿态的摄影测量系统提高了重建效率. 利用本算法对典型零件进行摄影测量质量和效率的验证, 均获得优异的位姿估计和重建效果. 提出的算法适用于实际工程应用, 尤其是快速稀疏摄影重建, 促进了工业摄影测量速度与自动化程度提升. 本文提出一种基于表面等离子体共振(surface plasmon resonance, SPR)的光纤传感器实现了葡萄糖浓度的测量. 该传感器探头采用反射式结构, 金膜镀在光纤表面激发SPR, 然后采用共价结合的方式将葡萄糖氧化酶(Glucose Oxidase, GOD)固定在金膜表面. 随着葡萄糖浓度的增加, 由于GOD和葡萄糖的结合使得探头表面折射率增加, 最终引起传感器谐振波长发生红移. 通过监测谐振波长的偏移量, 即可实现葡萄糖浓度的测量. 实验结果表明: 该传感器对折射率变化的灵敏度可达到2108.6 nm/RIU; 在0-0.5 mg/mL的葡萄糖浓度范围内, 谐振波长随葡萄糖浓度的增加而线性移动, 灵敏度为85.4 nm/(mg/mL); 随着葡萄糖浓度继续增加, GOD的结合位点逐渐减少, 导致光谱偏移量逐渐降低并趋于饱和, 在0.5-1.2 mg/mL的葡萄糖浓度范围内呈现非线性关系. 深度神经网络在解决复杂问题方面取得了惊人的成功, 广泛应用于生活中各个领域, 但是最近的研究表明, 深度神经网络容易受到精心设计的对抗样本的攻击, 导致网络模型输出错误的预测结果, 这对于深度学习网络的安全性是一种极大的挑战. 对抗攻击是深度神经网络发展过程中必须克服的一大障碍, 设计一种高效且能够防御多种对抗攻击算法, 且具有强鲁棒性的防御模型是有效推动对抗攻击防御的方向之一, 探究能否利用对抗性攻击来训练网络分类器从而提高其鲁棒性具有重要意义. 本文将生成对抗网络(Generative adversarial networks, GAN)和现有的攻击算法结合, 提出一种基于生成对抗网络的对抗攻击防御模型(AC-DefGAN), 利用对抗攻击算法生成攻击样本作为GAN的训练样本, 同时在网络中加入条件约束来稳定模型的训练过程, 利用分类器对生成器所生成样本的分类来指导GAN的训练过程, 通过自定义分类器需要防御的攻击算法来生成对抗样本以完成判别器的训练, 从而得到能够防御多种对抗攻击的分类器. 通过在MNIST、CIFAR-10和ImageNet数据集上进行实验, 证明训练完成后, AC-DefGAN可以直接对原始样本和对抗样本进行正确分类, 对各类对抗攻击算法达到很好的防御效果, 且比已有方法防御效果好、鲁棒性强. 感兴趣区域(Region of Interest, ROI) 提取在生物特征识别中, 常用于减少后续处理的计算消耗, 提高识别模型的准确性, 是生物识别系统中预处理的关键步骤. 针对生物识别数据, 本文提出了一种鲁棒的ROI提取方法. 方法使用语义分割模型作为基础, 通过增加全局感知模块, 与分割模型形成对抗结构, 为模型提供先验知识, 补充全局视觉模式信息, 解决了语义分割模型的末端收敛困难问题, 提高了模型的鲁棒性和泛化能力. 本文在传统二维(2D)指纹, 人脸, 三维(3D)指纹和指纹汗孔数据集中验证了方法的有效性. 实验结果表明, 相比于现有方法, 本文提出的ROI提取方法更具鲁棒性和泛化能力, 精度最高. 优化算法中多种群采样方式可转化为蒙特卡洛对当前函数积分的评估, 针对不同子种群对整体评估的差异性, 提出子种群规模 (个体数) 自适应的改进策略, 并用于多尺度量子谐振子优化算法(Multi-scale quantum harmonic oscillator algorithm, MQHOA) 的改进, 同时阐述多种群策略所具有的量子特性以及量子隧道效应与寻优性能的相关性, 已有的优化算法忽视了动态调节子种群规模对寻优能力的影响, 该策略通过动态调节子种群规模, 提高适应度差的子种群发生量子隧道效应的概率, 增强了算法的寻优能力, 将改进后的算法MQHOA-d(Multi-scale quantum harmonic oscillator algorithm based on dynamic subpopulation) 与 MQHOA 及其他优化算法在 CEC2013 测试集上进行测试, 结果表明原算法 MQHOA"早熟"问题在 MQHOA-d 中得到解决, 且 MQHOA-d 对多峰函数和复合函数优化具有显著优势, 求解误差和计算时间均小于几种经典优化算法. 合成孔径成像通过多角度获取目标信息来等效大孔径和小景深相机成像. 因此, 该技术可以虚化遮挡物, 实现对被遮挡目标的成像. 然而, 在密集遮挡和极端光照条件下, 由于遮挡物的密集干扰和相机本身较低的动态范围, 基于传统相机的合成孔径成像无法有效地对被遮挡目标进行成像. 本文利用事件相机低延时、高动态的特性, 提出基于事件相机的合成孔径成像方法. 事件相机产生异步事件数据, 具有极低的延时, 能够以连续视角观测场景, 从而消除密集干扰的影响. 而事件相机的高动态范围使其能够有效处理极端光照条件下的成像问题. 通过分析场景亮度变化与事件相机输出的事件点之间的关系, 从对焦后事件点重建出被遮挡目标, 实现基于事件相机的合成孔径成像. 实验结果表明, 本文方法与传统方法相比, 在密集遮挡条件下重建图像的对比度、清晰度、峰值信噪比和结构相似性指数均有较大提升. 同时, 在极端光照条件下, 本文方法能有效解决过曝/欠曝问题, 重建出清晰的被遮挡目标图像. 大多数行人重识别方法仅将注意力机制作为提取显著特征的辅助手段, 缺少网络对行人图像关注程度的量化研究. 本文基于此, 提出一种可解释注意力部件模型(Interpretable Attention Part Model, IAPM). 该模型有三个优点: 1)利用注意力掩码提取部件特征, 解决部件不对齐问题; 2)为了根据部件的显著性程度生成可解释权重, 设计可解释权重生成模块(Interpretable Weight Generation Module, IWM); 3)提出显著部件三元损失(Salient Part Triplet Loss, SPTL)用于IWM的训练, 提高识别精度和可解释性. 在三个主流数据集上进行实验, 验证所提出的方法优于现有行人重识别方法. 最后通过一项人群主观测评比较IWM生成可解释权重的相对大小与人类直观判断得分, 证明本方法具有良好的可解释性. 对运行设备安装双贮备设备是实现系统高可靠性的有效方法. 在双贮备系统冷/温/热三种贮备模型中, 选择哪种贮备模型对系统性能指标和经济指标均有重要影响, 因此对如何选择双贮备系统的贮备模型从而使系统性能最优或经济效益最大的问题进行研究具有现实意义. 而现有研究成果很少涉及双贮备系统贮备模型的优化选择问题. 为此, 本文创新性地提出一种确定双贮备系统最优贮备模型的选择方法. 分别建立系统冷/温/热贮备模型, 分析每个模型的系统状态及系统半Markov核函数, 利用Markov更新方程、Laplace变换以及Laplace-Stieltjes变换技术推导系统稳态可用度、稳态平均维修次数、维修人员忙期稳态概率以及冷贮备模型的平均激活时间, 并从经济角度给出系统单位时间内的净收益函数. 最后分别以性能指标和经济指标作为研究目标, 通过模型对比分析给出不同条件下的系统贮备模型的优化选择算法, 并对每个研究目标下的优化选择算法进行实例计算. 计算结果表明以不同性能指标和不同费用作为参考得出的最优贮备模型不尽相同, 从而验证了所提方法能够有效的确定不同衡量标准下的系统最优贮备模型.

地址:北京中关村东路95号 邮政编码:100190 E-mail: [email protected]

电话:010-82544677 (日常咨询和稿件处理), 010-82544653(费用管理、寄刊)

北京仁和汇智信息技术有限公司 开发 技术支持: [email protected]