[1] 李云龙, 陈慧雯, 朱子尧, 喻学锋. 一种杂化钙钛矿量子阵列薄膜及其制备方法和用途. CN202211496217.7, 2022-11-25.[2] 李云龙, 朱子尧, 陈慧雯, 喻学锋. 一种电流-电容双工作模式直接型X射线探测器和制备方法. CN202211482480.0, 2022-11-24.[3] 李云龙, 陈慧雯, 薛冬峰. 钙钛矿涂层及其制备方法、X射线探测器. CN202210562047.1, 2022-05-23.[4] 薛冬峰, 李云龙, 陈慧雯, 王晓明. 直接型X射线影像探测器及其制备方法. CN: CN114252031A, 2022-03-29.
[1] Zhu, Ziyao, Chen, Huiwen, Zhao, Bo, Huang, Weixiong, Lin, Qianqian, Yu, Xuefeng, Li, Yunlong. Ferroelectric dipole-MAPbI(3) coupled x-ray detector. APPLIED PHYSICS LETTERS[J]. 2023, 122(16): http://dx.doi.org/10.1063/5.0147065.[2] Liang, Kaibo, Wu, Yunjia, Zhen, Qingshui, Zou, Yu, Zhang, Xiuchun, Wang, Chenhao, Shi, Puyao, Zhang, Yangyang, Sun, Weihai, Li, Yunlong, Wu, Jihuai. Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells. SURFACES AND INTERFACES[J]. 2023, 37: http://dx.doi.org/10.1016/j.surfin.2023.102707.[3] Li, Yunlong, Adeagbo, Emmanuel, Koughia, Cyril, Simonson, Blaine, Pettipas, Richard D, Mishchenko, Anastasiia, Arnab, Salman M, Laperriere, Luc, Belev, George, Stevens, Amy L, Kasap, Safa O, Kelly, Timothy L. Direct conversion X-ray detectors with 70 pA cm(-2) dark currents coated from an alcohol-based perovskite ink. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2022, 10(4): 1228-1235, http://dx.doi.org/10.1039/d1tc05338h.[4] Cao, Fengxian, Chen, Huiwen, Wang, Shibo, Chen, Pengxu, Zhu, Chenwei, Lan, Zhang, Sun, Weihai, Li, Yunlong, Wu, Jihuai. One-step constructed dual interfacial layers for stable perovskite solar cells. MATERIALS TODAY PHYSICS[J]. 2022, 27: http://dx.doi.org/10.1016/j.mtphys.2022.100796.[5] Chen HuiWen, Li YunLong, Xue DongFeng. Perspective on perovskite materials as X-ray detectors. SCIENCE CHINA-TECHNOLOGICAL SCIENCES. 2021, 65: [6] Cao Yang, Li Yunlong, Morrissey Thomas, Lam Brian, Patrick Brian O, Dvorak David J, Xia Zhicheng, Kelly Timothy L, Berlinguette Curtis P. Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell. Energy & Environmental Science[J]. 2019, http://arxiv.org/abs/1908.04439.[7] Li, Yunlong, Sun, Weihai, Gu, Feidan, Ouyang, Dan, Bian, Zuqiang, Liu, Zhiwei, Choy, Wallace C H, Kelly, Timothy L. Soldering Grain Boundaries Yields Inverted Perovskite Solar Cells with Enhanced Open-Circuit Voltages. ADVANCED MATERIALS INTERFACES[J]. 2019, 6(14): http://dx.doi.org/10.1002/admi.201900474.[8] Li, Wang, Liu, Changwen, Li, Yunlong, Kong, Weiguang, Wang, Xingzhu, Chen, Hong, Xu, Baomin, Cheng, Chun. Polymer Assisted Small Molecule Hole Transport Layers Toward Highly Efficient Inverted Perovskite Solar Cells. SOLAR RRL[J]. 2018, 2(11): http://dx.doi.org/10.1002/solr.201800173.[9] Ye, Senyun, Rao, Haixia, Zhao, Ziran, Zhang, Linjuan, Bao, Hongliang, Sun, Weihai, Li, Yunlong, Gu, Feidan, Wang, Jianqiang, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2017, 139(22): 7504-7512, https://www.webofscience.com/wos/woscc/full-record/WOS:000403136500013.[10] Sun Weihai, Li Yunlong, Yan Weibo, Peng Haitao, Ye Senyun, Rao Haixia, Zhao Ziran, Liu Zhiwei, Bian Zuqiang, Huang Chunhui. Rapid and Complete Conversion of CH3NH3Pbl3 for Perovskite/C_(60) Planar-Heterojunction Solar Cells by Two-Step Deposition. CHINESE JOURNAL OF CHEMISTRY[J]. 2017, 35(5): 687-692, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6013941&detailType=1.[11] Zhao, Ziran, Sun, Weihai, Li, Yunlong, Ye, Senyun, Rao, Haixia, Gu, Feidan, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. Simplification of device structures for low-cost, high-efficiency perovskite solar cells. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2017, 5(10): 4756-4773, http://dx.doi.org/10.1039/c6ta10305g.[12] Sun, Weihai, Li, Yunlong, Xiao, Yan, Zhao, Ziran, Ye, Senyun, Rao, Haixia, Ting, Hungkit, Bian, Zuqiang, Xiao, Lixin, Huang, Chunhui, Chen, Zhijian. An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. ORGANIC ELECTRONICS[J]. 2017, 46: 22-27, http://dx.doi.org/10.1016/j.orgel.2017.03.019.[13] Zhao, Ziran, Gu, Feidan, Li, Yunlong, Sun, Weihai, Ye, Senyun, Rao, Haixia, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. ADVANCED SCIENCE[J]. 2017, 4(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000416155900010.[14] Sun, Weihai, Li, Yunlong, Yan, Weibo, Peng, Haitao, Ye, Senyun, Rao, Haixia, Zhao, Ziran, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. Rapid and Complete Conversion of CH3NH3PbI3 for Perovskite/C60 Planar-Heterojunction Solar Cells by Two-Step Deposition. CHINESE JOURNAL OF CHEMISTRY[J]. 2017, 35(5): 687-692, http://lib.cqvip.com/Qikan/Article/Detail?id=673225526.[15] Peng, Haitao, Sun, Weihai, Li, Yunlong, Ye, Senyun, Rao, Haixia, Yan, Weibo, Zhou, Huanping, Bian, Zuqiang, Huang, Chunhui. Solution processed inorganic V2O (x) as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. NANO RESEARCH[J]. 2016, 9(10): 2960-2971, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5848729&detailType=1.[16] Peng, Haitao, Sun, Weihai, Li, Yunlong, Yan, Weibo, Yu, Pingrong, Zhou, Huanping, Bian, Zuqiang, Huang, Chunhui. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces. JOURNAL OF PHOTONICS FOR ENERGY[J]. 2016, 6(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000378886600004.[17] Sun, Weihai, Li, Yunlong, Ye, Senyun, Rao, Haixia, Yan, Weibo, Peng, Haitao, Li, Yu, Liu, Zhiwei, Wang, Shufeng, Chen, Zhijian, Xiao, Lixin, Bian, Zuqiang, Huang, Chunhui. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx, hole transport layer. NANOSCALE[J]. 2016, 8(20): 10806-10813, http://dx.doi.org/10.1039/c6nr01927g.[18] Ye, Senyun, Rao, Haixia, Yan, Weibo, Li, Yunlong, Sun, Weihai, Peng, Haitao, Liu, Zhiwei, Bian, Zuqiang, Li, Yongfang, Huang, Chunhui. A Strategy to Simplify the Preparation Process of Perovskite Solar Cells by Co-deposition of a Hole-Conductor and a Perovskite Layer. ADVANCED MATERIALS[J]. 2016, 28(43): 9648-+, https://www.doi.org/10.1002/adma.201603850.[19] Rao, Haixia, Ye, Senyun, Sun, Weihai, Yan, Weibo, Li, Yunlong, Peng, Haitao, Liu, Zhiwei, Bian, Zuqiang, Li, Yongfang, Huang, Chunhui. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. NANO ENERGY[J]. 2016, 27: 51-57, http://dx.doi.org/10.1016/j.nanoen.2016.06.044.[20] Rao, Haixia, Sun, Weihai, Ye, Senyun, Yan, Weibo, Li, Yunlong, Peng, Haitao, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(12): 7800-7805, http://dx.doi.org/10.1021/acsami.5b12776.[21] Li, Yunlong, Sun, Weihai, Yan, Weibo, Ye, Senyun, Rao, Haixia, Peng, Haitao, Zhao, Ziran, Bian, Zuqiang, Liu, Zhiwei, Zhou, Huanping, Huang, Chunhui. 50% Sn-Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6%. ADVANCED ENERGY MATERIALS[J]. 2016, 6(24): https://www.doi.org/10.1002/aenm.201601353.[22] Yan, Weibo, Ye, Senyun, Li, Yunlong, Sun, Weihai, Rao, Haixia, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells. ADVANCED ENERGY MATERIALSnull. 2016, 6(17): https://www.doi.org/10.1002/aenm.201600474.[23] Yan, Weibo, Li, Yu, Ye, Senyun, Li, Yunlong, Rao, Haixia, Liu, Zhiwei, Wang, Shufeng, Bian, Zuqiang, Huang, Chunhui. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells. NANO RESEARCH[J]. 2016, 9(6): 1600-1608, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5845953&detailType=1.[24] Li, Yu, Yan, Weibo, Li, Yunlong, Wang, Shufeng, Wang, Wei, Bian, Zuqiang, Xiao, Lixin, Gong, Qihuang. Direct Observation of Long Electron-Hole Diffusion Distance in CH3NH3PbI3 Perovskite Thin Film. SCIENTIFIC REPORTS[J]. 2015, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000361878100001.[25] Li, Yunlong, Sun, Weihai, Yan, Weibo, Ye, Senyun, Peng, Haitao, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. High-Performance Planar Solar Cells Based On CH3NH3PbI3-xClx Perovskites with Determined Chlorine Mole Fraction. ADVANCED FUNCTIONAL MATERIALS[J]. 2015, 25(30): 4867-4873, https://www.webofscience.com/wos/woscc/full-record/WOS:000359381300014.[26] Yan, Weibo, Li, Yunlong, Li, Yu, Ye, Senyun, Liu, Zhiwei, Wang, Shufeng, Bian, Zuqiang, Huang, Chunhui. Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. NANO RESEARCH[J]. 2015, 8(8): 2474-2480, https://www.webofscience.com/wos/woscc/full-record/WOS:000359865100003.[27] Li, Yunlong, Ye, Senyun, Sun, Weihai, Yan, Weibo, Li, Yu, Bian, Zuqiang, Liu, Zhiwei, Wang, Shufeng, Huang, Chunhui. Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(36): 18389-18394, http://dx.doi.org/10.1039/c5ta05989e.[28] Sun, Weihai, Peng, Haitao, Li, Yunlong, Yan, Weibo, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui. Solution-Processed Copper Iodide as an Inexpensive and Effective Anode Buffer Layer for Polymer Solar Cells. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2014, 118(30): 16806-16812, http://dx.doi.org/10.1021/jp412784q.