相关文章推荐
道上混的鸡蛋  ·  传奇厂牌4AD的前世今生——从极地双子星和王 ...·  1 年前    · 
傻傻的茴香  ·  足球经理2021专区_fm21中文版下载,M ...·  1 年前    · 
奔放的梨子  ·  如何恶补建筑设计理论知识呢? - 知乎·  1 年前    · 
坏坏的板栗  ·  南京市栖霞区人民政府燕子矶办事处·  1 年前    · 
爱跑步的香蕉  ·  文德皇后_百度百科·  1 年前    · 
小百科  ›  【机器学习】算法原理详细推导与实现(二):逻辑回归logistic函数逻辑 ...
公理系统 sigmoid 逻辑函数 逻辑回归 机器学习
强悍的鸵鸟
1 年前
作者头像
机器学习和大数据挖掘
0 篇文章

【机器学习】算法原理详细推导与实现(二):逻辑回归 logistic函数逻辑回归鸢尾花分类

前往专栏
腾讯云
开发者社区
文档 意见反馈 控制台
首页
学习
活动
专区
工具
TVP
文章/答案/技术大牛
发布
首页
学习
活动
专区
工具
TVP
返回腾讯云官网
社区首页 > 专栏 > 数据挖掘 > 正文

【机器学习】算法原理详细推导与实现(二):逻辑回归 logistic函数逻辑回归鸢尾花分类

发布 于 2019-07-01 18:30:11
1.1K 0
举报

【机器学习】算法原理详细推导与实现(二):逻辑回归

在上一篇算法中,线性回归实际上是 连续型 的结果,即 \(y\in R\) ,而逻辑回归的 \(y\) 是离散型,只能取两个值 \(y\in \{0,1\}\),这可以用来处理一些分类的问题。

logistic函数

我们可能会遇到一些分类问题,例如想要划分 鸢尾花 的种类,尝试基于一些特征来判断鸢尾花的品种,或者判断上一篇文章中的房子,在6个月之后能否被卖掉,答案是 是 或者 否 ,或者一封邮件是否是垃圾邮件。所以这里是 \(x\) ,这里是 \(y\) 在一个分类问题中,\(y\) 只能取两个值0和1,这就是一个二元分类的问题,如下所示:

可以使用线性回归对以上数值进行划分,可以拟合出如下那么一条线,用 \(y=0.5\) 作为临界点,如果 \(x\) 在这个临界点的右侧,那么 \(y\) 的值就是1,如果在临界点的左侧,那么 \(y\) 的值就是0,所以确实会有一些人会这么做,用线性回归解决分类问题:

线性回归解决分类问题,有时候它的效果很好,但是通常用线性回归解决像这样的分类问题会是一个很糟糕的主意,加入存在一个额外的训练样本 \(x=12\),如果现在对这个训练集合做线性拟合,那么可能拟合出来那么一条直线:

这时候\(y\)的临界点估计已经不太合适了,可以知道线性回归对于分类问题来说,不是一个很好的方法。

假设 \(h_\theta(x) \in [0,1]\),当如果已知 \(y\in \{0,1\}\),那么至少应该让假设 \(h_\theta(x)\) 预测出来的值不会比1大太多,也不会比0小太多,所以一般不会选择线性函数作为假设,而是会选择一些稍微不同的函数图像:

\[ g(z)=\frac{1}{1+e^{-z}} \]

\[ h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}} \]

\(g(z)\) 被称为 sigmoid函数 ,也通常被称为 logistic函数 ,它的函数图像是:

当 \(z\) 变得非常小的时候,\(g(x)\) 会趋向于0,当\(z\)变得非常大的时候,\(g(x)\) 会趋向于1,它和纵轴相较于0.5。

逻辑回归

那么我们的假设\(h_\theta(x)\) 要尝试估计 \(y\in \{0,1\}\) 的概率,即:

\[ P(y=1|x;\theta)=h_\theta(x) \]

\[ P(y=0|x;\theta)=1-h_\theta(x) \]

以上可以把两个公式合并简写为(如果\(y=1\)那么公式为\(h_\theta(x)\);如果\(y=0\)那么公式为\(1-h_\theta(x)\)):

\[ P(y|x;\theta)=(h_\theta(x))^y(1-h_\theta(x))^{1-y} \]

如果对《概率论和数理统计》学得好的人不难看出,以上函数其实就是 伯努利分布 的函数。

对于每一个假设值\(h_\theta(x)\),为了使每一次假设值更准确,即当 \(y=1\) 时估计函数 \(P(y=1|x;\theta)=h_\theta(x)\) 趋向于1,当\(y=0\) 时估计函数 \(P(y=0|x;\theta)=1-h_\theta(x)\) 趋向于0。则对于每一个\((x_i,y_i)\),参数 \(\theta\) 的似然估计 \(L(\theta)\)为:

\[ \begin{split} L(\theta)&=P(\vec{y}|X;\theta) \\ &=\prod_{i=1}^mP(y^{(i)}|x^{(i)};\theta) \\ &=\prod_{i=1}^m(h_\theta(x^{(i)}))^{y^{(i)}}(1-h_\theta(x^{(i)}))^{1-{y^{(i)}}} \end{split} \]

如果每一个\((x_i,y_i)\)都准确,即 \(P(y|x;\theta)\) 趋向于1,则应该使似然估计 \(L(\theta)\) 最大化,也就是转化成熟悉的问题: 求解 \(L(\theta)\) 的极大似然估计 。

为了调整参数 \(\theta\) 使似然估计 \(L(\theta)\) 最大化,推导如下(取 \(log\) 是为了去掉叠乘方便计算):

\[ \begin{split} l(\theta)&=logL(\theta) \\ &=\sum_{i=1}^m{y^{(i)}logh(x^{(i)})+(1-y^{(i)})log(1-h(x^{(i)}))} \end{split} \]

为了使这个函数最大,同样可以使用前面学习过的梯度下降算法使对数似然估计最大化。之前学习的是要使误差和 最小化 ,所以梯度下降的公式为:

\[ \theta:=\theta-\alpha\frac{\partial J(\theta)}{\partial\theta}=>\theta:=\theta-\alpha\nabla_\theta J(\theta) \]

而本次为了求解似然估计最大化,使用的是梯度上升:

\[ \theta:=\theta+\alpha\nabla_\theta l(\theta)=>\theta:=\theta+\alpha\frac{\partial l(\theta)}{\partial\theta} \]

对数似然性是和 \(\theta\) 有关,同样的为了计算 梯度上升 最快的方向,要对上述公式求偏导得到极值,即是上升最快的方向:

\[ \begin{split} \frac{\partial l(\theta)}{\partial\theta_j}&=(y\frac{1}{g(\theta^Tx)}-(1-y)\frac{1}{1-g(\theta^Tx)})\frac{\partial}{\partial\theta_j}g(\theta^Tx) \\ &=(y\frac{1}{g(\theta^Tx)}-(1-y)\frac{1}{1-g(\theta^Tx)})g(\theta^Tx)(1-g(\theta^Tx))\frac{\partial}{\partial\theta_j}\theta^Tx \\ &=(y(1-g(\theta^Tx))-(1-y)g(\theta^Tx))x_j \\ &=(y-g(\theta^Tx))x_j \\ &=(y-h_{\theta}(x))x_j \end{split} \]

则对于 m 个样本,则有:

\[ \frac{\partial l(\theta)}{\partial\theta_j}=\sum_{i=1}^m{(y-h_{\theta}(x))x_j} \]

\[ \theta_j:=\theta_j+\sum_{i=1}^m{(y^{(i)}-h_{\theta}(x^{(i)}))x^{(i)}_j} \]

所以总结来说:

逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。

鸢尾花分类

为了划分 鸢尾花 的种类,尝试基于一些特征来判断鸢尾花的品种,选取100条 鸢尾花 数据集如下所示:

花萼长度(单位cm)

花萼宽度(单位cm)

种类

5.1

3.5

0

4.9

3.0

0

4.7

3.2

0

7.0

3.2

1

6.4

3.2

1

...

...

...

其中:

种类

含义

0

山鸢尾(setosa)

1

变色鸢尾(versicolor)

2

维吉尼亚鸢尾(virginica)

数据集的图像分布为:

计算损失函数:

# 损失函数
def computeCost(theta, X, y):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
    return np.sum(first - second) / (len(X))

梯度下降函数为:

# 梯度下降
def gradient(theta, X, y):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    parameters = int(theta.ravel().shape[1])
    grad = np.zeros(parameters)
    error = sigmoid(X * theta.T) - y
 
推荐文章
道上混的鸡蛋  ·  传奇厂牌4AD的前世今生——从极地双子星和王菲到特斯拉第一夫人 ...
1 年前
傻傻的茴香  ·  足球经理2021专区_fm21中文版下载,MOD,修改器,攻略,汉化补丁_ ...
1 年前
奔放的梨子  ·  如何恶补建筑设计理论知识呢? - 知乎
1 年前
坏坏的板栗  ·  南京市栖霞区人民政府燕子矶办事处
1 年前
爱跑步的香蕉  ·  文德皇后_百度百科
1 年前
Link管理   ·   51好读   ·   Sov5搜索   ·   小百科
小百科 - 百科知识指南