As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
. 2021 Mar;42(3):177–184. [Article in Chinese] doi: 10.3760/cma.j.issn.0253-2727.2021.03.001
  • Search in PMC
  • Search in PubMed
  • View in NLM Catalog
  • Add to search
    • 造血干细胞移植相关血栓性微血管病诊断和治疗中国专家共识(2021年版)

      Chinese consensus on the diagnosis and management of transplant-associated thrombotic microangiopathy (2021)

      中华医学会血液学分会造血干细胞应用学组
      Editor: 徐 茂强
    • 通信作者:黄晓军,北京大学人民医院,北京大学血液病研究所,国家血液系统疾病临床医学研究中心,造血干细胞移植治疗血液病北京市重点实验室,北京 100044,Email: [email protected] ;吴德沛,苏州大学第一附属医院,国家血液系统疾病临床医学研究中心,苏州 215006,Email: [email protected]

      Corresponding author: Huang Xiaojun, Peking University People's Hospital, Peking University, Institute of Hematology, National Clinical Research Center for Blood Diseases, Beijing 100044, China. Email: [email protected] ; Wu Depei, the First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou 215006, China. Email: [email protected]

      (执笔:张晓辉、张曦、韩悦、唐晓文、姜尔烈、罗依)

      参与共识制定和讨论的专家 (以专家所在单位的首字母排序,同一单位多个专家按照姓氏首字母排序):安徽省立医院(孙自敏、朱小玉);北京大学第一医院(李渊);北京大学人民医院、北京大学血液病研究所(程翼飞、黄晓军、刘开彦、孙于谦、王峰蓉、许兰平、张晓辉);北京协和医院(段明辉、周道斌);重庆医科大学附属第一医院(刘林);大连医科大学附属第一医院(马亮亮);第四军医大学西京医院(陈协群);福建医科大学附属协和医院(李乃农、杨婷);广西医科大学附属第一医院(赖永榕、李桥川);哈尔滨市第一医院哈尔滨血液病肿瘤研究所(王志国);海军军医大学附属长海医院(杨建民);河南省肿瘤医院(符粤文、宋永平);华中科技大学同济医学院附属协和医院(夏凌辉);华中科技大学同济医学院附属同济医院(张义成);华北理工大学附属医院(高峰);解放军总医院第一医学中心(刘代红);解放军总医院第五医学中心(郭梅、胡亮钉);吉林大学第一医院(高素君);空军军医大学第二附属医院(刘利);陆道培医院(陆佩华、卢岳);陆军军医大学附属第二医院(张曦);南方医科大学南方医院(金华、李春富、刘启发、宣丽);南方科技大学医院(李丽敏);四川大学华西医院(陈心传);山东大学齐鲁医院(侯明、刘传方);山西医科大学第二医院(张建华);上海市第一人民医院(宋献民);上海交通大学医学院附属上海儿童医学中心(陈静);上海交通大学医学院附属瑞金医院(胡炯、姜杰玲);首都医科大学附属北京朝阳医院(陈文明);苏州大学附属第一医院(韩悦、唐晓文、王荧、吴德沛);西安交通大学第一附属医院(张梅);新疆医科大学附属第一医院(江明、袁海龙);徐州医科大学附属医院(徐开林);浙江大学医学院附属第一医院(黄河、罗依);浙江中医药大学附属第一医院(叶宝东);郑州大学第一附属医院(万鼎铭);中国医学科学院血液病医院(韩明哲、姜尔烈);中国医科大学附属盛京医院(刘卓刚);中南大学湘雅三医院(李昕);中山大学附属第一医院(许多荣);南方医科大学珠江医院(吴秉毅)

      2021年版权归中华医学会所有
      PMCID: PMC8081937  PMID: 33910301

      造血干细胞移植(HSCT)是根治血液系统疾患重要的手段之一,随着HSCT技术的日益成熟和推广普及,国内HSCT例数逐年增加。移植相关血栓性微血管病(TA-TMA)是一种HSCT的严重并发症。目前对TA-TMA的发病机制得到了一定的深入和系统研究,但其诊断标准和治疗方案仍缺乏统一的临床规范。因此,为进一步解决TA-TMA临床诊治的实际问题,建立并优化国内TA-TMA的临床诊治路径,中华医学会血液学分会发起制定本共识,为中国HSCT的临床实践提供规范合理的诊治指导意见。

      一、定义和流行病学

      TA-TMA是一类以微血管性溶血性贫血、血小板减少、微血栓形成和多器官功能障碍为主要临床表现的造血干细胞移植后严重并发症 [1] 。若不及时治疗,TA-TMA患者死亡率为50%~90%,尤其高危患者死亡率高达80% [2] [6] 。血栓性微血管病(TMA)包括溶血尿毒综合征(HUS)、血栓性血小板减少性紫癜(TTP)和HSCT、肿瘤、感染和自身免疫疾病等继发的TMA等。TA-TMA是HSCT相关的继发性TMA。TA-TMA根据确诊时间,分为早发型TA-TMA(确诊于移植后100 d内)和迟发型TA-TMA(确诊于移植后100 d以后)两种类型 [7] [8]

      目前,关于TA-TMA的发生率不同文献报道差异较大,主要与诊断标准等因素有关。采用不同时期和不同学术组织对TA-TMA的诊断标准,TA-TMA在欧美国家的发生率为0.5%~25% [3] , [6] 。根据移植类型分类,国际上TA-TMA在异基因造血干细胞移植(allo-HSCT)后的发生率为0.5%~64% [9] [10] ,自体造血干细胞移植(auto-HSCT)后TA-TMA的发生率<1% [11] 。Laskin等 [6] 分析近年来大样本回顾性研究结果发现,TA-TMA的发生率为10%~25%,该结果可能更接近TA-TMA的真实发生率。国内报道的allo-HSCT后TA-TMA发生率为4% [12]

      二、发病机制

      TA-TMA的发病机制尚不明确,目前认为预处理、免疫抑制剂、补体、感染、移植物抗宿主病(GVHD)、炎性细胞因子(TNF-α、IL-8等)和中性粒细胞胞外诱捕网(NET)等引起血管内皮细胞损伤,导致微血栓形成,最终引发TA-TMA [6] 。目前“二次打击学说”理论认为:一次打击是指在预处理和移植后早期阶段,正常内皮细胞在放化疗、长期制动、无关供者、HLA不匹配等危险因素作用下,形成血管内皮细胞介导的促凝状态;二次打击是指在移植后造血重建阶段,在钙调磷酸酶抑制剂(CNI)和雷帕霉素靶蛋白(mTOR)抑制剂、GVHD和感染等危险因素作用下,造成血管内皮细胞损伤,补体系统的异常活化在TA-TMA的发生中发挥重要作用,补体活化的经典途径参与了直接的血管内皮损伤,损伤的血管内皮激活了补体活化的旁路途径并介导了血管内皮的再损伤。最终,血小板聚集和微血栓形成导致了TA-TMA的发生 [13]

      组织活检病理是确诊TA-TMA的金标准,然而在移植后患者中有创操作较为困难。随着HSCT技术的进步和对TA-TMA研究的深入,根据临床表现、实验室标志物及组织学病理特点,Jodele等 [2] , [14] 提出的TA-TMA诊断标准首次纳入组织学证据、高血压、蛋白尿及C5b-9水平升高( 表1 )。此标准具有较高的实用性和可靠性,受到国内外学者们的广泛认可 [15] [20] ,因此本共识推荐使用Jodele等提出的诊断标准。在TA-TMA的众多诊断标准中,BMT-CTN标准 [3] 、IWG标准 [21] 、Cho等提出的标准 [22] 和City of Hope标准 [23] 也可供参考。

      表1. 移植相关血栓性微血管病(TA-TMA)诊断标准 [2] , [14] .

      组织活检有微血栓证据或满足以下7项实验室或临床指标中的5项:  ①乳酸脱氢酶(LDH)超过正常值上限  ②蛋白尿(随机尿蛋白超过正常值上限或随机尿蛋白/肌酐≥2 mg/mg)  ③高血压(年龄<18岁:血压高于同年龄、性别和身高的健康人群血压正常参考值的上限;年龄≥18岁:血压≥140/90 mmHg)  ④新发的血小板减少(血小板计数<50×10 9 /L或血小板计数较基线水平减少≥50%)  ⑤新发的贫血(血红蛋白值低于正常参考值下限或输血需求增加)  ⑥微血管病变证据(外周血中存在破碎红细胞或组织标本的病理学检查结果提示微血管病)  ⑦终末补体活化(血浆sC5b-9值高于健康人群正常值上限)

      注:sC5b-9:可溶性补体膜攻击复合物;①、②、③:考虑TA-TMA的诊断,需密切监测;②+⑦:提示预后较差,考虑及早干预

      TA-TMA的早期诊断:①高血压;②蛋白尿;③LDH升高。这三项指标在TA-TMA诊断前即可发生,可作为早期诊断指标指导早期干预,改善预后 [24]

      TA-TMA不良预后的相关因素包括:①HGB<80 g/L;②随机尿蛋白升高(超过正常参考值上限);③随机尿蛋白/肌酐>2 mg/mg;④补体sC5b-9升高(超过正常参考值上限)。其中,蛋白尿和补体sC5b-9升高的TA-TMA患者预后较差(1年生存率<20%) [24]

      高危TA-TMA(hrTA-TMA)或重度TA-TMA的诊断标准 [16] :满足TA-TMA诊断标准且包含以下3条中的2条:①随机尿蛋白/肌酐≥2 mg/mg;②血浆sC5b-9水平超过正常参考值上限;③多器官功能衰竭综合征(MODS)。

      TA-TMA微血栓可发生于几乎所有脏器,如肾脏、胃肠道、肺、脑及心脏等,也可引起多发性浆膜炎。各脏器TA-TMA临床表现不具特异性,病理诊断仍是诊断TA-TMA的金标准。

      肾脏是TA-TMA最常累及的器官,发生率为20%~46% [24] [27] 。临床以高血压、蛋白尿及肌酐升高为主要表现。由于肾脏TA-TMA临床表现不具特异性,因此肾脏活检辅助TA-TMA诊断更可靠。肾脏TA-TMA组织学表现如下:①肾小血管血栓 [25] , [28] [30] ;②肾小球间质溶解 [25] , [28] [31] ;③毛细血管袢阻塞 [25] , [28] [31] ;④系膜破碎红细胞 [27] , [29] [31] ;⑤肾小球毛细血管壁增厚 [27] , [29] [31] ;⑥基底膜双线征 [27] , [29] [31] ;⑦小动脉透明样变性 [27] , [29] ;⑧特征性的肾小动脉C4d沉积 [28] , [32] [33]

      胃肠道是TA-TMA常累及的脏器,其发生率仅次于肾脏 [30] 。肠道TA-TMA(iTMA)是TA-TMA在肠道的一种表现形式,临床表现为腹痛、腹泻、呕吐等,其诊断多依据组织学检查结果。肠道是TA-TMA的靶器官 [34] ,iTMA的诊断推荐依据临床表现、实验室检查,尤其是肠道的病理组织学特征 [35] [37] 。iTMA的组织学特征包括:①血管周围黏膜出血 [35] [40] ;②血管内皮细胞肿胀 [30] , [35] , [38] [42] ;③内皮细胞剥离 [30] , [35] [40] ;④内皮细胞凋亡 [35] , [37] , [40] ;⑤毛细血管管腔内破碎红细胞 [30] , [35] , [38] [41] ;⑥管腔内纤维素沉积/纤维素样坏死 [30] , [34] , [37] [39] , [41] [42] ;⑦管腔内微血栓沉积 [30] , [34] [35] , [37] [42] ;⑧黏膜完全脱落 [30] , [36] [39] , [42] ;⑨腺体消失 [35] , [37] [40]

      四、鉴别诊断

      本病主要需要与以下疾病鉴别:

      ①非典型溶血尿毒综合征(aHUS):HUS是一类以微血管溶血性贫血、血小板减少、急性肾损伤“三联征”为主要表现的临床综合征,按病因可分为典型HUS和aHUS。aHUS主要指由补体旁路途径异常且除外感染和移植等其他原发病引起的TMA [43] 。TA-TMA和aHUS的鉴别主要依据HSCT病史。此外,aHUS以急性肾损伤为主要临床表现,但并非所有TA-TMA患者均有肾脏损害表现。

      ②TTP:除了“三联征”表现以外,TTP常伴有发热和神经系统症状,肾损伤相对较轻。TTP的发病机制主要与血浆ADAMTS13活性显著降低(常在10%以下)或ADAMTS13自身抗体或抑制物产生有关,导致超大分子量VWF多聚体不能被裂解,血小板大量聚集,微血栓大量形成而引发TTP。而TA-TMA中ADAMTS13活性并不降低 [16] , [44] 。可通过检测ADAMTS13活性或抑制物对两者进行鉴别。此外,TTP较TA-TMA更易累及神经系统。

      ③GVHD:GVHD指由异基因供者细胞与受者组织发生免疫反应导致的临床综合征,是allo-HSCT后最常见并发症之一 [45] 。GVHD介导内皮细胞损伤参与TA-TMA的发生机制。急性GVHD主要累及皮肤、胃肠道和肝脏,肠道急性GVHD与iTMA多伴随发生,均可发生腹痛、腹泻等临床症状,临床鉴别困难,因此,组织学鉴别尤为重要 [35] [37] 。单纯的急性GVHD与TA-TMA可根据实验室或临床指标(如破碎红细胞、C5b-9水平、高血压和GVHD生物标志物等)进行鉴别。合并急性GVHD的TA-TMA患者总生存率明显下降,非复发死亡率显著增高 [46]

      ④肝小静脉闭塞症(VOD)/肝窦阻塞综合征(SOS):是一种造血干细胞移植后的严重并发症,多发生于移植后30 d内。其主要临床表现包括肝肿大、腹水、黄疸、体重增加等,常并发MODS甚至死亡 [47] 。VOD/SOS诊断主要依赖于临床表现,肝脏超声、CT和MRI等影像学检查可辅助诊断,必要时需行经颈静脉测量肝静脉压力梯度及肝脏穿刺活检 [48] [49] 。VOD/SOS主要累及肝脏,而TA-TMA主要累及肾脏,肝脏受累罕见 [2] , [11] 。临床医师可根据临床表现、实验室指标(破碎红细胞、C5b-9水平等)和影像学检查等对二者进行鉴别。

      五、治疗原则和一线治疗

      TA-TMA的一线治疗以去除病因和支持治疗为主,包括及时减/停CNI/mTOR抑制剂、控制高血压、治疗感染和GVHD等可能会诱发TA-TMA的合并症 [2] , [6] , [11] 。移植早期根据患者病情,并结合各中心的临床经验和具体情况,可加用巴利昔单抗(Baliximab)/糖皮质激素/霉酚酸酯等免疫抑制剂预防或治疗GVHD;TA-TMA症状消除或控制后,应根据移植类型、疾病时间和感染等评估使用急性GVHD的预防方案,若必须加用环孢素A、他克莫司等,应密切注意TA-TMA的再次发生。若一线治疗效果欠佳,推荐联合使用二线治疗( 图1 )。二线治疗可以使用血浆置换(TPE)、依库珠单抗(Eculizumab)、利妥昔单抗(Rituximab)、去纤苷(Difibrotide)等治疗手段(治疗选择没有优先顺序)。

      图1. 造血干细胞移植相关血栓性微血管病(TA-TMA)的治疗流程图 [50] .

      CNI:钙调磷酸酶抑制剂;mTOR:雷帕霉素靶蛋白;CFH:补体因子H;sC56-9:可溶性补体膜攻击复合物

      六、二线治疗

      1. 去纤苷:去纤苷是一种从猪肠黏膜提取的单链寡聚脱氧核糖核苷酸复合物,能稳定并保护内皮细胞,具有促纤溶、抗血栓形成、抗缺血、抗炎和抗黏附活性 [51] [52] 。去纤苷治疗TA-TMA的有效率可达65%~77% [53] [55] 。一线疗效欠佳的TA-TMA患者,有条件的血液医学中心可尝试去纤苷治疗,根据病情,推荐剂量为20~40 mg·kg −1 ·d −1 ,维持治疗至少14 d。去纤苷在临床应用中有良好的安全性,但仍需注意其出血风险 [56]

      2. 依库珠单抗:依库珠单抗是一种人源型抗C5单克隆抗体,临床常用于治疗aHUS和阵发性睡眠性血红蛋白尿症(PNH),可通过阻断补体膜攻击复合物C5b-9的形成来阻止内皮和组织损伤,是目前治疗TA-TMA最有潜力的药物 [16] , [57] [58] 。依库珠单抗治疗TA-TMA的缓解率为50%~93% [57] , [59] [61] ,且能明显改善患者预后,移植后一年总生存率为66% [16] 。研究表明,治疗前sC5b-9水平与依库珠单抗治疗剂量和应答时间呈正相关 [16]

      应用时机:对于一线治疗效果欠佳的高危TA-TMA患者,尤其是sC5b-9升高的TA-TMA患者,有条件的医疗中心可尝试应用依库珠单抗 [16] , [62] 。国内经验较少,需要临床进一步研究和证实。国际上研究显示,依库珠单抗用量主要根据治疗前sC5b-9水平和依库珠单抗治疗浓度(谷浓度≥ 100 mg/L)而定。对于sC5b-9升高的成年患者,依库珠单抗的推荐起始剂量为每3天900 mg,直到sC5b-9恢复正常或维持治疗15 d后改为诱导剂量每周900 mg,直到sC5b-9恢复正常或维持4周。维持剂量为诱导剂量减低300 mg,每周1次,维持4周。随后减量至最低剂量600 mg每周1次,维持2周( 表2 )。若sC5b-9正常,则从诱导剂量每周900 mg开始用药( 表3 )。依库珠单抗每次用药前需检测血清依库珠单抗浓度,每周检测2次sC5b-9水平。对于不能达到治疗浓度的患者,可缩短给药间隔;若在缩短给药间隔的48 h内还未达到治疗浓度,则每剂增加300 mg。仅在依库珠单抗达到治疗浓度且sC5b-9正常至少维持2次治疗剂量,再进入下一治疗阶段。另外,不建议依库珠单抗与TPE或利妥昔单抗联合使用。

      表2. 依库珠单抗治疗sC5b-9升高TA-TMA的治疗建议.

      注:TA-TMA:移植相关血栓性微血管病;sC5b-9:可溶性补体膜攻击复合物;对于不能达到依库珠单抗治疗浓度的患者,可缩短给药间隔;若在缩短给药间隔的48 h内还未达到治疗浓度,则每剂增加300 mg;仅在依库珠单抗达到治疗浓度且sC5b-9正常至少维持2次治疗剂量,再进入下一治疗阶段

      3. 利妥昔单抗:利妥昔单抗是一种抗CD20单克隆抗体,治疗TA-TMA的缓解率为67%~80% [63] [64] 。一线治疗效果欠佳的患者可尝试利妥昔单抗,建议用量为每周375 mg/m 2 ,连续应用4周。利妥昔单抗可单药或联合TPE/去纤苷治疗TA-TMA [65] [66] 。利妥昔单抗与TPE联合使用时,建议在TPE后立即给药,以期在下次TPE治疗前获得最大疗效,且在利妥昔单抗用药12~24 h内尽量避免应用TPE [2] , [67] [68]

      4. TPE:TPE治疗TA-TMA的有效率为36.5%(0%~80%) [3] ,近年来,研究显示TPE中位有效率为59%(27%~80%) [6] 。TPE治疗GVHD合并TA-TMA的有效率为22%,明显低于单纯TA-TMA [69] 。尽早应用TPE可能使TA-TMA患者获益 [70] ,但TPE不能改善TA-TMA肾脏预后 [5] 。TPE的干预时间、是否合并GVHD和TA-TMA发生时间等均可能影响TPE的疗效。TPE可能通过清除CFH抗体和炎症因子等发挥对TA-TMA的治疗作用 [6]

      应用时机:若一线治疗效果欠佳、患者出现补体成分异常或根据TA-TMA病情和疗效选择使用TPE治疗。建议有条件的治疗中心采用新鲜冰冻血浆,每次置换血浆量为1~1.5倍血浆容量,建议40~60 ml·kg −1 ·d −1 。最初每天治疗1次,持续1~2周后根据患者的临床表现、实验室指标和治疗反应调整剂量及频次。评估病情,可缓慢减量至隔日1次,持续1~2周;继之每周2~3次,持续1~2周。如果减量过程中,临床表现、体征或实验室指标显示TA-TMA复发,则终止减量 [2] , [70] [72] ;如果没有条件实施TPE,也可进行新鲜冰冻血浆输注替代治疗(10~20 ml/kg)以改善症状。

      5. 其他药物:达克珠单抗 [73] 、长春新碱 [74] 、普伐他汀 [75] 和重组人可溶性血栓调节蛋白 [76] 等药物缺乏足够的循证医学证据,可根据医师经验及患者状况进行个体化选择。

      References

      1. Laskin BL, Goebel J, Davies SM, et al. Small vessels, big trouble in the kidneys and beyond: hematopoietic stem cell transplantation-associated thrombotic microangiopathy[J] Blood. 2011;118(6):1452–1462. doi: 10.1182/blood-2011-02-321315. [ DOI ] [ PubMed ] [ Google Scholar ] 2. Jodele S, Laskin BL, Dandoy CE, et al. A new paradigm: Diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury[J] Blood Rev. 2015;29(3):191–204. doi: 10.1016/j.blre.2014.11.001. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 3. Ho VT, Cutler C, Carter S, et al. Blood and marrow transplant clinical trials network toxicity committee consensus summary: thrombotic microangiopathy after hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2005;11(8):571–575. doi: 10.1016/j.bbmt.2005.06.001. [ DOI ] [ PubMed ] [ Google Scholar ] 4. Elsallabi O, Bhatt VR, Dhakal P, et al. Hematopoietic stem cell transplant-associated thrombotic microangiopathy[J] Clin Appl Thromb Hemost. 2016;22(1):12–20. doi: 10.1177/1076029615598221. [ DOI ] [ PubMed ] [ Google Scholar ] 5. Sartain S, Shubert S, Wu MF, et al. Therapeutic plasma exchange does not improve renal function in hematopoietic stem cell transplantation-associated thrombotic microangiopathy: an institutional experience[J] Biol Blood Marrow Transplant. 2019;25(1):157–162. doi: 10.1016/j.bbmt.2018.08.016. [ DOI ] [ PubMed ] [ Google Scholar ] 6. Laskin BL, Goebel J, Davies SM, et al. Small vessels, big trouble in the kidneys and beyond: hematopoietic stem cell transplantation-associated thrombotic microangiopathy[J] Blood. 2011;118(6):1452–1462. doi: 10.1182/blood-2011-02-321315. [ DOI ] [ PubMed ] [ Google Scholar ] 7. Mulay S, Kreuter JD, Bryant SC, et al. Outcomes of plasma exchange in patients with transplant-associated thrombotic microangiopathy based on time of presentation since transplant[J] J Clin Apher. 2015;30(3):147–153. doi: 10.1002/jca.21352. [ DOI ] [ PubMed ] [ Google Scholar ] 8. Heybeli C, Sridharan M, Alkhateeb HB, et al. Characteristics of late transplant-associated thrombotic microangiopathy in patients who underwent allogeneic hematopoietic stem cell transplantation[J] Am J Hematol. 2020 doi: 10.1002/ajh.25922. [ DOI ] [ PubMed ] [ Google Scholar ] 9. Kojouri K, George JN. Thrombotic microangiopathy following allogeneic hematopoietic stem cell transplantation[J] Curr Opin Oncol. 2007;19(2):148–154. doi: 10.1097/CCO.0b013e3280148a2f. [ DOI ] [ PubMed ] [ Google Scholar ] 10. George JN, Li X, McMinn JR, et al. Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma[J] Transfusion. 2004;44(2):294–304. doi: 10.1111/j.1537-2995.2004.00700.x. [ DOI ] [ PubMed ] [ Google Scholar ] 11. Seaby EG, Gilbert RD. Thrombotic microangiopathy following haematopoietic stem cell transplant[J] Pediatr Nephrol. 2018;33(9):1489–1500. doi: 10.1007/s00467-017-3803-4. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 12. Ye Y, Zheng W, Wang J, et al. Risk and prognostic factors of transplantation-associated thrombotic microangiopathy in allogeneic haematopoietic stem cell transplantation: a nested case control study[J] Hematol Oncol. 2017;35(4):821–827. doi: 10.1002/hon.2310. [ DOI ] [ PubMed ] [ Google Scholar ] 13. Khosla J, Yeh AC, Spitzer TR, et al. Hematopoietic stem cell transplant-associated thrombotic microangiopathy: current paradigm and novel therapies[J] Bone Marrow Transplant. 2018;53(2):129–137. doi: 10.1038/bmt.2017.207. [ DOI ] [ PubMed ] [ Google Scholar ] 14. Jodele S, Dandoy CE, Myers KC, et al. New approaches in the diagnosis, pathophysiology, and treatment of pediatric hematopoietic stem cell transplantation-associated thrombotic microangiopathy[J] Transfus Apher Sci. 2016;54(2):181–190. doi: 10.1016/j.transci.2016.04.007. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 15. Schoettler M, Lehmann LE, Margossian S, et al. Risk factors for transplant-associated thrombotic microangiopathy and mortality in a pediatric cohort[J] Blood Adv. 2020;4(11):2536–2547. doi: 10.1182/bloodadvances.2019001242. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 16. Jodele S, Dandoy CE, Lane A, et al. Complement blockade for TA-TMA: lessons learned from a large pediatric cohort treated with eculizumab[J] Blood. 2020;135(13):1049–1057. doi: 10.1182/blood.2019004218. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 17. Elfeky R, Lucchini G, Lum SH, et al. New insights into risk factors for transplant-associated thrombotic microangiopathy in pediatric HSCT[J] Blood Adv. 2020;4(11):2418–2429. doi: 10.1182/bloodadvances.2019001315. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 18. 韩 悦. 我如何治疗移植相关性血栓性微血管病[J] 中华血液学杂志. 2020;41(4):272–275. doi: 10.3760/cma.j.issn.0253-2727.2020.04.002. [ DOI ] [ Google Scholar ] 19. 刘 晓, 张 晓辉. 造血干细胞移植相关血栓性微血管病的发病机制及诊治研究现状[J] 国际输血及血液学杂志. 2019;42(6):461–468. [ Google Scholar ] 20. 王 兆钺. 造血干细胞移植相关血栓性微血管病研究的新进展[J] 临床血液学杂志. 2018;31(5):390–393. doi: 10.13201/j.issn.1004-2806.2018.05.016. [ DOI ] [ Google Scholar ] 21. Ruutu T, Barosi G, Benjamin RJ, et al. Diagnostic criteria for hematopoietic stem cell transplant-associated microangiopathy: results of a consensus process by an International Working Group[J] Haematologica. 2007;92(1):95–100. doi: 10.3324/haematol.10699. [ DOI ] [ PubMed ] [ Google Scholar ] 22. Cho BS, Yahng SA, Lee S, et al. Validation of recently proposed consensus criteria for thrombotic microangiopathy after allogeneic hematopoietic stem-cell transplantation[J] Transplantation. 2010;90(8):918–926. doi: 10.1097/TP.0b013e3181f24e8d. [ DOI ] [ PubMed ] [ Google Scholar ] 23. Shayani S, Palmer J, Stiller T, et al. Thrombotic microangiopathy associated with sirolimus level after allogeneic hematopoietic cell transplantation with tacrolimus/sirolimus-based graft-versus-host disease prophylaxis[J] Biol Blood Marrow Transplant. 2013;19(2):298–304. doi: 10.1016/j.bbmt.2012.10.006. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 24. Jodele S, Davies SM, Lane A, et al. Diagnostic and risk criteria for HSCT-associated thrombotic microangiopathy: a study in children and young adults[J] Blood. 2014;124(4):645–653. doi: 10.1182/blood-2014-03-564997. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 25. Changsirikulchai S, Myerson D, Guthrie KA, et al. Renal thrombotic microangiopathy after hematopoietic cell transplant: role of GVHD in pathogenesis[J] Clin J Am Soc Nephrol. 2009;4(2):345–353. doi: 10.2215/CJN.02070508. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 26. El-Seisi S, Gupta R, Clase CM, et al. Renal pathology at autopsy in patients who died after hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2003;9(11):683–688. doi: 10.1016/s1083-8791(03)00243-x. [ DOI ] [ PubMed ] [ Google Scholar ] 27. Troxell ML, Pilapil M, Miklos DB, et al. Renal pathology in hematopoietic cell transplantation recipients[J] Mod Pathol. 2008;21(4):396–406. doi: 10.1038/modpathol.3801011. [ DOI ] [ PubMed ] [ Google Scholar ] 28. Laskin BL, Maisel J, Goebel J, et al. Renal arteriolar C4d deposition: a novel characteristic of hematopoietic stem cell transplantation-associated thrombotic microangiopathy[J] Transplantation. 2013;96(2):217–223. doi: 10.1097/TP.0b013e31829807aa. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 29. Chang A, Hingorani S, Kowalewska J, et al. Spectrum of renal pathology in hematopoietic cell transplantation: a series of 20 patients and review of the literature[J] Clin J Am Soc Nephrol. 2007;2(5):1014–1023. doi: 10.2215/CJN.01700407. [ DOI ] [ PubMed ] [ Google Scholar ] 30. Yamada R, Nemoto T, Ohashi K, et al. Distribution of Transplantation-Associated Thrombotic Microangiopathy (TA-TMA) and Comparison between Renal TA-TMA and Intestinal TA-TMA: Autopsy Study[J] Biol Blood Marrow Transplant. 2020;26(1):178–188. doi: 10.1016/j.bbmt.2019.08.025. [ DOI ] [ PubMed ] [ Google Scholar ] 31. Wanchoo R, Bayer RL, Bassil C, et al. Emerging Concepts in Hematopoietic Stem Cell Transplantation – Associated Renal Thrombotic Microangiopathy and Prospects for New Treatments[J] Am J Kidney Dis. 2018;72(6):857–865. doi: 10.1053/j.ajkd.2018.06.013. [ DOI ] [ PubMed ] [ Google Scholar ] 32. Sakamoto K, Imamura T, Osone S, et al. Hematopoietic stem cell transplantation-associated thrombotic microangiopathy accompanied by renal arteriolar C4d deposition[J] Pediatr Transplant. 2015;19(4):E97–100. doi: 10.1111/petr.12450. [ DOI ] [ PubMed ] [ Google Scholar ] 33. Chua JS, Baelde HJ, Zandbergen M, et al. Complement factor C4d is a common denominator in thrombotic microangiopathy[J] J Am Soc Nephrol. 2015;26(9):2239–2247. doi: 10.1681/ASN.2014050429. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 34. Nishida T, Hamaguchi M, Hirabayashi N, et al. Intestinal thrombotic microangiopathy after allogeneic bone marrow transplantation: a clinical imitator of acute enteric graft-versus-host disease[J] Bone Marrow Transplant. 2004;33(11):1143–1150. doi: 10.1038/sj.bmt.1704512. [ DOI ] [ PubMed ] [ Google Scholar ] 35. Inamoto Y, Ito M, Suzuki R, et al. Clinicopathological manifestations and treatment of intestinal transplant-associated microangiopathy[J] Bone Marrow Transplant. 2009;44(1):43–49. doi: 10.1038/bmt.2008.419. [ DOI ] [ PubMed ] [ Google Scholar ] 36. Yamada-Fujiwara M, Miyamura K, Fujiwara T, et al. Diagnosis of intestinal graft-versus-host disease and thrombotic microangiopathy after allogeneic stem cell transplantation[J] Tohoku J Exp Med. 2012;227(1):31–37. doi: 10.1620/tjem.227.31. [ DOI ] [ PubMed ] [ Google Scholar ] 37. Gavriilaki E, Sakellari I, Karafoulidou I, et al. Intestinal thrombotic microangiopathy: a distinct entity in the spectrum of graftversus-host disease[J] Int J Hematol. 2019;110(5):529–532. doi: 10.1007/s12185-019-02750-7. [ DOI ] [ PubMed ] [ Google Scholar ] 38. Warren M, Jodele S, Dandoy C, et al. A Complete Histologic Approach to Gastrointestinal Biopsy From Hematopoietic Stem Cell Transplant Patients With Evidence of Transplant-Associated Gastrointestinal Thrombotic Microangiopathy[J] Arch Pathol Lab Med. 2017;141(11):1558–1566. doi: 10.5858/arpa.2016-0599-RA. [ DOI ] [ PubMed ] [ Google Scholar ] 39. El-Bietar J, Warren M, Dandoy C, et al. Histologic features of intestinal thrombotic microangiopathy in pediatric and young adult patients after hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2015;21(11):1994–2001. doi: 10.1016/j.bbmt.2015.06.016. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 40. Yamamoto S, Nakase H, Chiba T, et al. Clinical challenges and images in GI. Image 4. Transplant-associated thrombotic microangiopathy of the colon accompanied by graft-versus-host disease[J] Gastroenterology. 2009;136(7):2067. doi: 10.1053/j.gastro.2009.02.086. [ DOI ] [ PubMed ] [ Google Scholar ] 41. Siami K, Kojouri K, Swisher KK, et al. Thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation: an autopsy study[J] Transplantation. 2008;85(1):22–28. doi: 10.1097/01.tp.0000297998.33418.7e. [ DOI ] [ PubMed ] [ Google Scholar ] 42. Narimatsu H, Kami M, Hara S, et al. Intestinal thrombotic microangiopathy following reduced-intensity umbilical cord blood transplantation[J] Bone Marrow Transplant. 2005;36(6):517–523. doi: 10.1038/sj.bmt.1705099. [ DOI ] [ PubMed ] [ Google Scholar ] 43. Jokiranta TS. HUS and atypical HUS[J] Blood. 2017;129(21):2847–2856. doi: 10.1182/blood-2016-11-709865. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 44. Kremer Hovinga JA, Coppo P, Lämmle B, et al. Thrombotic thrombocytopenic purpura[J] Nat Rev Dis Primers. 2017;3:17020. doi: 10.1038/nrdp.2017.20. [ DOI ] [ PubMed ] [ Google Scholar ] 45. 中华医学会血液学分会干细胞应用学组. 中国异基因造血干细胞移植治疗血液系统疾病专家共识(Ⅲ)——急性移植物抗宿主病(2020年版)[J] 中华血液学杂志. 2020;41(7):529–536. doi: 10.3760/cma.j.issn.0253-2727.2020.07.001. [ DOI ] [ Google Scholar ] 46. Zhang XH, Liu X, Wang QM, et al. Thrombotic microangiopathy with concomitant GI aGVHD after allogeneic hematopoietic stem cell transplantation: Risk factors and outcome[J] Eur J Haematol. 2018;100(2):171–181. doi: 10.1111/ejh.12996. [ DOI ] [ PubMed ] [ Google Scholar ] 47. Fan CQ, Crawford JM. Sinusoidal obstruction syndrome (hepatic veno-occlusive disease)[J] Clin Exp Hepatol. 2014;4(4):332–346. doi: 10.1016/j.jceh.2014.10.002. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 48. Ravaioli F, Colecchia A, Alemanni LV, et al. Role of imaging techniques in liver veno-occlusive disease diagnosis: recent advances and literature review[J] Expert Rev Gastroenterol Hepatol. 2019;13(5):463–484. doi: 10.1080/17474124.2019.1588111. [ DOI ] [ PubMed ] [ Google Scholar ] 49. Mohty M, Malard F, Abecassis M, et al. Sinusoidal obstruction syndrome/veno-occlusive disease: current situation and perspectives-a position statement from the European Society for Blood and Marrow Transplantation (EBMT)[J] Bone Marrow Transplant. 2015;50(6):781–789. doi: 10.1038/bmt.2015.52. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 50. Dvorak CC, Higham C, Shimano KA. Transplant-associated thrombotic microangiopathy in pediatric hematopoietic cell transplant recipients: a practical approach to diagnosis and management[J] Front Pediatr. 2019;7:133. doi: 10.3389/fped.2019.00133. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 51. Pescador R, Capuzzi L, Mantovani M, et al. Defibrotide: properties and clinical use of an old/new drug[J] Vascul Pharmacol. 2013;59(1-2):1–10. doi: 10.1016/j.vph.2013.05.001. [ DOI ] [ PubMed ] [ Google Scholar ] 52. Carmona A, Díaz-Ricart M, Palomo M, et al. Distinct deleterious effects of cyclosporine and tacrolimus and combined tacrolimus-sirolimus on endothelial cells: protective effect of defibrotide[J] Biol Blood Marrow Transplant. 2013;19(10):1439–1445. doi: 10.1016/j.bbmt.2013.07.001. [ DOI ] [ PubMed ] [ Google Scholar ] 53. Martínez-Muñoz ME, Forés R, Lario A, et al. Use of defibrotide to treat adult patients with transplant-associated thrombotic microangiopathy[J] Bone Marrow Transplant. 2019;54(1):142–145. doi: 10.1038/s41409-018-0256-8. [ DOI ] [ PubMed ] [ Google Scholar ] 54. Devadas SK, Toshniwal M, Bagal B, et al. Successful treatment of transplant associated thrombotic microangiopathy (TATMA) with low dose defibrotide[J] Indian J Hematol Blood Transfus. 2018;34(3):469–473. doi: 10.1007/s12288-017-0904-y. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 55. Yeates L, Slatter MA, Bonanomi S, et al. Use of defibrotide to treat transplant-associated thrombotic microangiopathy: a retrospective study of the Paediatric Diseases and Inborn Errors Working Parties of the European Society of Blood and Marrow Transplantation[J] Bone Marrow Transplant. 2017;52(5):762–764. doi: 10.1038/bmt.2016.351. [ DOI ] [ PubMed ] [ Google Scholar ] 56. Laberko A, Aksenova M, Shipitsina I, et al. Serious hemorrhagic complications after successful treatment of hematopoietic stem cell transplantation-associated thrombotic microangiopathy with defibrotide in pediatric patient with myelodysplastic syndrome[J] Front Pediatr. 2020;8:155. doi: 10.3389/fped.2020.00155. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 57. Vasu S, Wu H, Satoskar A, et al. Eculizumab therapy in adults with allogeneic hematopoietic cell transplant-associated thrombotic microangiopathy[J] Bone Marrow Transplant. 2016;51(9):1241–1244. doi: 10.1038/bmt.2016.87. [ DOI ] [ PubMed ] [ Google Scholar ] 58. Konar M, Granoff DM. Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults[J] Blood. 2017;130(7):891–899. doi: 10.1182/blood-2017-05-781450. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 59. Jan AS, Hosing C, Aung F, et al. Approaching treatment of transplant-associated thrombotic Microangiopathy from two directions with Eculizumab and transitioning from Tacrolimus to Sirolimus[J] Transfusion. 2019;59(11):3519–3524. doi: 10.1111/trf.15534. [ DOI ] [ PubMed ] [ Google Scholar ] 60. Bohl SR, Kuchenbauer F, von Harsdorf S, et al. Thrombotic microangiopathy after allogeneic stem cell transplantation: a comparison of eculizumab therapy and conventional therapy[J] Biol Blood Marrow Transplant. 2017;23(12):2172–2177. doi: 10.1016/j.bbmt.2017.08.019. [ DOI ] [ PubMed ] [ Google Scholar ] 61. Jodele S, Fukuda T, Mizuno K, et al. Variable eculizumab clearance requires pharmacodynamic monitoring to optimize therapy for thrombotic microangiopathy after hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2016;22(2):307–315. doi: 10.1016/j.bbmt.2015.10.002. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 62. Jodele S, Fukuda T, Vinks A, et al. Eculizumab therapy in children with severe hematopoietic stem cell transplantationassociated thrombotic microangiopathy[J] Biol Blood Marrow Transplant. 2014;20(4):518–525. doi: 10.1016/j.bbmt.2013.12.565. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 63. Au WY, Ma ES, Lee TL, et al. Successful treatment of thrombotic microangiopathy after haematopoietic stem cell transplantation with rituximab[J] Br J Haematol. 2007;137(5):475–478. doi: 10.1111/j.1365-2141.2007.06588.x. [ DOI ] [ PubMed ] [ Google Scholar ] 64. Jodele S, Licht C, Goebel J, et al. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy[J] Blood. 2013;122(12):2003–2007. doi: 10.1182/blood-2013-05-501445. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 65. Carella AM, D'Arena G, Greco MM, et al. Rituximab for allo-SCT-associated thrombotic thrombocytopenic purpura[J] Bone Marrow Transplant. 2008;41(12):1063–1065. doi: 10.1038/bmt.2008.25. [ DOI ] [ PubMed ] [ Google Scholar ] 66. Au WY, Ma ES, Lee TL, et al. Successful treatment of thrombotic microangiopathy after haematopoietic stem cell transplantation with rituximab[J] Br J Haematol. 2007;137(5):475–478. doi: 10.1111/j.1365-2141.2007.06588.x. [ DOI ] [ PubMed ] [ Google Scholar ] 67. Blombery P, Scully M. Management of thrombotic thrombocytopenic purpura: current perspectives[J] J Blood Med. 2014;5:15–23. doi: 10.2147/JBM.S46458. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 68. Kim SS, Patel M, Yum K, et al. Hematopoietic stem cell transplant-associated thrombotic microangiopathy: review of pharmacologic treatment options[J] Transfusion. 2015;55(2):452–458. doi: 10.1111/trf.12859. [ DOI ] [ PubMed ] [ Google Scholar ] 69. Kennedy GA, Kearey N, Bleakley S, et al. Transplantationassociated thrombotic microangiopathy: effect of concomitant GVHD on efficacy of therapeutic plasma exchange[J] Bone Marrow Transplant. 2010;45(4):699–704. doi: 10.1038/bmt.2009.233. [ DOI ] [ PubMed ] [ Google Scholar ] 70. Jodele S, Laskin BL, Goebel J, et al. Does early initiation of therapeutic plasma exchange improve outcome in pediatric stem cell transplant-associated thrombotic microangiopathy?[J] Transfusion. 2013;53(3):661–667. doi: 10.1111/j.1537-2995.2012.03776.x. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 71. Picod A, Coppo P. Developments in the use of plasma exchange and adjunctive therapies to treat immune-mediated thrombotic thrombocytopenic purpura[J] Expert Rev Hematol. 2019;12(6):461–471. doi: 10.1080/17474086.2019.1619170. [ DOI ] [ PubMed ] [ Google Scholar ] 72. Sayani FA, Abrams CS. How I treat refractory thrombotic thrombocytopenic purpura[J] Blood. 2015;125(25):3860–3867. doi: 10.1182/blood-2014-11-551580. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 73. Wolff D, Wilhelm S, Hahn J, et al. Replacement of calcineurin inhibitors with daclizumab in patients with transplantationassociated microangiopathy or renal insufficiency associated with graft-versus-host disease[J] Bone Marrow Transplant. 2006;38(6):445–451. doi: 10.1038/sj.bmt.1705454. [ DOI ] [ PubMed ] [ Google Scholar ] 74. Mateos J, Pérez-Simón JA, Caballero D, et al. Vincristine is an effective therapeutic approach for transplantation-associated thrombotic microangiopathy[J] Bone Marrow Transplant. 2006;37(3):337–338. doi: 10.1038/sj.bmt.1705241. [ DOI ] [ PubMed ] [ Google Scholar ] 75. Uesawa M, Muroi K, Ozawa K. Plasmapheresis-refractory transplantation-associated thrombotic microangiopathy successfully treated with pravastatin and limaprost alfadex[J] Ther Apher Dial. 2013;17(4):462–463. doi: 10.1111/1744-9987.12015. [ DOI ] [ PubMed ] [ Google Scholar ] 76. Fujiwara H, Maeda Y, Sando Y, et al. Treatment of thrombotic microangiopathy after hematopoietic stem cell transplantation with recombinant human soluble thrombomodulin[J] Transfusion. 2016;56(4):886–892. doi: 10.1111/trf.13437. [ DOI ] [ PubMed ] [ Google Scholar ]

      Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology