语音识别技术基础理解

语音识别 是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。

语音识别的基本原理

语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示:

image.png

未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。而计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表就可以给出计算机的识别结果。显然,这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。

语音识别系统构建过程整体上包括两大部分:训练和识别。训练通常是离线完成的,对预先收集好的海量语音、语言数据库进行信号处理和知识挖掘,获取语音识别系统所需要的“声学模型”和“语言模型”;而识别过程通常是在线完成的,对用户实时的语音进行自动识别。识别过程通常又可以分为“前端”和“后端”两大模块:“前端”模块主要的作用是进行端点检测(去除多余的静音和非说话声)、降噪、特征提取等;“后端”模块的作用是利用训练好的“声学模型”和“语言模型”对用户说话的特征向量进行统计模式识别(又称“解码”),得到其包含的文字信息,此外,后端模块还存在一个“自适应”的反馈模块,可以对用户的语音进行自学习,从而对“声学模型”和“语音模型”进行必要的“校正”,进一步提高识别的准确率。

语音识别是模式识别的一个分支,又从属于信号处理科学领域,同时与语音学、语言学、数理统计及神经生物学等学科有非常密切的关系。语音识别的目的就是让机器“听懂”人类口述的语言,包括了两方面的含义:其一是逐字逐句听懂并转化成书面语言文字;其二是对口述语言中所包含的要求或询问加以理解,做出正确响应,而不拘泥于所有词的正确转换。

自动语音识别技术有三个基本原理:首先语音信号中的语言信息是按照短时幅度谱的时间变化模式来编码;其次语音是可以阅读的,即它的声学信号可以在不考虑说话人试图传达的信息内容的情况下用数十个具有区别性的、离散的符号来表示;第三语音交互是一个认知过程,因而不能与语言的语法、语义和语用结构割裂开来。

声学模型:语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。

搜索: 连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。

系统实现: 语音识别系统选择识别基元的要求是,有准确的定义,能得到足够数据进行训练,具有一般性。英语通常采用上下文相关的音素建模,汉语的协同发音不如英语严重,可以采用音节建模。系统所需的训练数据大小与模型复杂度有关。模型设计得过于复杂以至于超出了所提供的训练数据的能力,会使得性能急剧下降。

听写机: 大词汇量、非特定人、连续语音识别系统通常称为听写机。其架构就是建立在前述声学模型和语言模型基础上的HMM拓扑结构。训练时对每个基元用前向后向算法获得模型参数,识别时,将基元串接成词,词间加上静音模型并引入语言模型作为词间转移概率,形成循环结构,用Viterbi算法进行解码。针对汉语易于分割的特点,先进行分割再对每一段进行解码,是用以提高效率的一个简化方法。

对话系统: 用于实现人机口语对话的系统称为对话系统。受目前技术所限,对话系统往往是面向一个狭窄领域、词汇量有限的系统,其题材有旅游查询、订票、数据库检索等等。其前端是一个语音识别器,识别产生的N-best候选或词候选网格,由语法分析器进行分析获取语义信息,再由对话管理器确定应答信息,由语音合成器输出。由于目前的系统往往词汇量有限,也可以用提取关键词的方法来获取语义信息。

语音识别技术原理-工作原理解读

首先,我们知道声音实际上是一种波。常见的mp3等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如Windows PCM文件,也就是俗称的wav文件。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。

图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,声学特征也不止有MFCC这一种,具体这里不讲。

至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。

接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:

音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集,参见The CMU Pronouncing Dictionary。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。

状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:

第一步,把帧识别成状态(难点)。
第二步,把状态组合成音素。
第三步,把音素组合成单词。

如下图所示:

image.png

图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧在状态S3上的条件概率最大,因此就猜这帧属于状态S3。

image.png

那这些用到的概率从哪里读取呢?有个叫“声学模型”的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。获取这一大堆参数的方法叫做“训练”,需要使用巨大数量的语音数据,训练的方法比较繁琐,这里不讲。

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号,相邻两帧间的状态号基本都不相同。假设语音有1000帧,每帧对应1个状态,每3个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。

解决这个问题的常用方法就是使用隐马尔可夫模型(Hidden Markov Model,HMM)。这东西听起来好像很高深的样子,实际上用起来很简单:

第一步,构建一个状态网络。
第二步,从状态网络中寻找与声音最匹配的路径。

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了“今天晴天”和“今天下雨”两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。

那如果想识别任意文本呢?把这个网络搭得足够大,包含任意文本的路径就可以了。但这个网络越大,想要达到比较好的识别准确率就越难。所以要根据实际任务的需求,合理选择网络大小和结构。

搭建状态网络,是由单词级网络展开成音素网络,再展开成状态网络。语音识别过程其实就是在状态网络中搜索一条最佳路径,语音对应这条路径的概率最大,这称之为“解码”。路径搜索的算法是一种动态规划剪枝的算法,称之为Viterbi算法,用于寻找全局最优路径。

语言概率:根据语言统计规律得到的概率

其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,可以利用某门语言本身的统计规律来帮助提升识别正确率。语言模型很重要,如果不使用语言模型,当状态网络较大时,识别出的结果基本是一团乱麻。

这样基本上语音识别过程就完成了,这就是语音识别技术的原理。

语音识别技术原理-语音识别系统的工作流程

一般来说,一套完整的语音识别系统其工作过程分为7步:

①对语音信号进行分析和处理,除去冗余信息。
②提取影响语音识别的关键信息和表达语言含义的特征信息。
③紧扣特征信息,用最小单元识别字词。
④按照不同语言的各自语法,依照先后次序识别字词。
⑤把前后意思当作辅助识别条件,有利于分析和识别。
⑥按照语义分析,给关键信息划分段落,取出所识别出的字词并连接起来,同时根据语句意思调整句子构成。
⑦结合语义,仔细分析上下文的相互联系,对当前正在处理的语句进行适当修正。

音识别系统基本原理框图

image.png

语音识别系统基本原理结构如图所示。语音识别原理有三点:①对语音信号中的语言信息编码是按照幅度谱的时间变化来进行;②由于语音是可以阅读的,也就是说声学信号可以在不考虑说话人说话传达的信息内容的前提下用多个具有区别性的、离散的符号来表示;③语音的交互是一个认知过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。

预处理,其中就包括对语音信号进行采样、克服混叠滤波、去除部分由个体发音的差异和环境引起的噪声影响,此外还会考虑到语音识别基本单元的选取和端点检测问题。反复训练是在识别之前通过让说话人多次重复语音,从原始语音信号样本中去除冗余信息,保留关键信息,再按照一定规则对数据加以整理,构成模式库。再者是模式匹配,它是整个语音识别系统的核心部分,是根据一定规则以及计算输入特征与库存模式之间的相似度,进而判断出输入语音的意思。

前端处理,先对原始语音信号进行处理,再进行特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征。

用深度学习进行语音识别

机器学习并不总是一个黑盒

如果你知道神经机器翻译是如何工作的,那么你可能会猜到,我们可以简单地将声音送入神经网络中,并训练使之生成文本:

image.png

一个大问题是语速不同。一个人可能很快地说出「hello!」而另一个人可能会非常缓慢地说「heeeelllllllllllllooooo!」。这产生了一个更长的声音文件,也产生了更多的数据。这两个声音文件都应该被识别为完全相同的文本「hello!」而事实证明,把各种长度的音频文件自动对齐到一个固定长度的文本是很难的一件事情。

为了解决这个问题,我们必须使用一些特殊的技巧,并进行一些深度神经网络以外的特殊处理。让我们看看它是如何工作的吧!

将声音转换成比特(Bit)

声音是作为波(wave) 的形式传播的。我们如何将声波转换成数字呢?让我们使用我说的「hello」这个声音片段举个例子:

这被称为采样(sampling)。我们每秒读取数千次,并把声波在该时间点的高度用一个数字记录下来。这基本上就是一个未压缩的 .wav 音频文件。

「CD 音质」的音频是以 44.1khz(每秒 44100 个读数)进行采样的。但对于语音识别,16khz(每秒 16000 个采样)的采样率就足以覆盖人类语音的频率范围了。

让我们把「Hello」的声波每秒采样 16000 次。这是前 100 个采样:

数字采样能否完美重现原始声波?那些间距怎么办?
但是,由于采样定理,我们知道我们可以利用数学,从间隔的采样中完美重建原始声波——只要我们的采样频率比期望得到的最高频率快至少两倍就行。
我提这一点,是因为几乎每个人都会犯这个错误,并误认为使用更高的采样率总是会获得更好的音频质量。其实并不是。

预处理我们的采样声音数据

我们现在有一个数列,其中每个数字代表 1/16000 秒的声波振幅。

我们可以把这些数字输入到神经网络中,但是试图直接分析这些采样来进行语音识别仍然很困难。相反,我们可以通过对音频数据进行一些预处理来使问题变得更容易。

让我们开始吧,首先将我们的采样音频分成每份 20 毫秒长的音频块。这是我们第一个 20 毫秒的音频(即我们的前 320 个采样):

image.png
虽然这段录音只有**** 1/50 ****秒的长度,但即使是这样短暂的录音,也是由不同频率的声音复杂地组合在一起的。其中有一些低音,一些中音,甚至有几处高音。但总的来说,就是这些不同频率的声音混合在一起,才组成了人类的语音。
为了使这个数据更容易被神经网络处理,我们将把这个复杂的声波分解成一个个组成部分。我们将分离低音部分,再分离下一个最低音的部分,以此类推。然后将(从低到高)每个频段(frequency band)中的能量相加,我们就为各个类别的音频片段创建了一个指纹(fingerprint)。
想象你有一段某人在钢琴上演奏 C 大调和弦的录音。这个声音是由三个音符组合而成的:C、E 和 G。它们混合在一起组成了一个复杂的声音。我们想把这个复杂的声音分解成单独的音符,以此来分辨 C、E 和 G。这和语音识别是一样的道理。
我们需要傅里叶变换**(FourierTransform)来做到这一点。它将复杂的声波分解为简单的声波。一旦我们有了这些单独的声波,我们就将每一份频段所包含的能量加在一起。

最终得到的结果便是从低音(即低音音符)到高音,每个频率范围的重要程度。以每 50hz 为一个频段的话,我们这 20 毫秒的音频所含有的能量从低频到高频就可以表示为下面的列表:

「hello」声音剪辑的完整声谱

频谱图很酷,因为你可以在音频数据中实实在在地看到音符和其他音高模式。对于神经网络来说,相比于原始声波,从这种数据中寻找规律要容易得多。因此,这就是我们将要实际输入到神经网络中去的数据表示方式。

从短声音识别字符

现在我们有了格式易于处理的音频,我们将把它输入到深度神经网络中去。神经网络的输入将会是 20 毫秒的音频块。对于每个小的音频切片(audio slice),神经网络都将尝试找出当前正在说的声音所对应的字母。

image.png

我们将使用一个循环神经网络——即一个拥有记忆,能影响未来预测的神经网络。这是因为它预测的每个字母都应该能够影响它对下一个字母的预测。例如,如果我们到目前为止已经说了「HEL」,那么很有可能我们接下来会说「LO」来完成「Hello」。我们不太可能会说「XYZ」之类根本读不出来的东西。因此,具有先前预测的记忆有助于神经网络对未来进行更准确的预测。

当通过神经网络跑完我们的整个音频剪辑(一次一块)之后,我们将最终得到一份映射(mapping),其中标明了每个音频块和其最有可能对应的字母。这是我说那句「Hello」所对应的映射的大致图案:

image.png

我们的神经网络正在预测我说的那个词很有可能是「HHHEE_LL_LLLOOO」。但它同时认为我说的也可能是「HHHUU_LL_LLLOOO」,或者甚至是「AAAUU_LL_LLLOOO」。

我们可以遵循一些步骤来整理这个输出。首先,我们将用单个字符替换任何重复的字符:

· HHHEE_LL_LLLOOO 变为 HE_L_LO
· HHHUU_LL_LLLOOO 变为 HU_L_LO
· AAAUU_LL_LLLOOO 变为 AU_L_LO

然后,我们将删除所有空白:

· HE_L_LO 变为 HELLO
· HU_L_LO 变为 HULLO
· AU_L_LO 变为 AULLO