Abstract
Glucose-6-phosphate dehydrogenase is the first key enzyme in the pentose phosphate pathway. Its main physiological function is to produce NADPH and ribose-5-phosphate which are essential for reductive biosynthesis and nucleic acid synthesis. The pentose phosphate pathway is especially important in red blood cells because it is the only way to produce NADPH. The major role of NADPH in erythrocytes has been reported to regenerate the reduced form of glutathione (GSH), which plays an important role in detoxification of hydrogen peroxide and organic peroxides. However, the physiological function of G6PD in non-erythroid cells is less well-characterized.
In order to study the function of G6PD in non-erythroid cells, we examined the sensitivity of NIH3T3 cells transfected with a plasmid containing human G6PD cDNA to tert-butyl hydroperoxide (TBH) and paraquat. Two transfected clones which had a sixteen fold (H7 clone) and six fold (H6 clone) increase in their intracellular G6PD activity, were compared with control cells transfected with a vector alone. Cells with high-level expression of human G6PD were 2.3 (H6) to 3.7 (H7) times more resistant to TBH than control cells. The antioxidant (anti-TBH) abilities in H6 and H7 cells were revealed by (1) a significant increase in the intracellular level of NADPH and glutathione, (2) a reduction of fluorescent intensity of the oxidant-sensitive dye, 2*,7*-dichlorofluorescin diacetate, and (3) a significant reduction in the production of oxidized adducts generated by lipid peroxidation. In contrast, cells overexpressing G6PD were very sensitive to paraquat, a superoxide-producing herbicide. The concentrations of paraquat required to produce a 50% decrease in cell viability of H7, H6 and control cells were 0.80 mM, 1.14 mM and 2.19 mM, respectively. The cytotoxicity of paraquat correlated with the expression level of NADPH in the cells. In this study, overexpression of human G6PD in NIH3T3 cells had different effects on the toxicity of TBH versus paraquat. Reduction of NADP+ to NADPH by G6PD protects cells from oxidative damage by TBH, but appears to enhance the toxicity of paraquat.
In addition to the role of G6PD in antioxidation systems, G6PD activity was reported to be positively correlated with active cell growth. In normal cells, G6PD expression is tightly controlled, however, regulation of its expression is altered, resulting in a significant increase of G6PD activity in many tumors. To investigate the potential role of G6PD in tumorigenesis, we study the growth properties and transforming ability of the two G6PD-overexpressing cell clones, H6 and H7. Both showed altered cell morphology and exhibited tumorigenic properties. In contrast to the control cells or cells transfected with mutated G6PD cDNA, cells with high level expression of G6PD were not contact inhibited and exhibited anchorage-independent growth. They divided more quickly and induced rapidly growing, large fibrosarcomas in nude mice. The formation of new blood vessels was observed in the G6PD-induced tumors. Moreover, the induced tumorigenic properties were positively correlated with the level of the intracellular G6PD activity. H7 cells had a much higher saturation density and formed foci and colonies more efficiently than H6. Moreover, H7-induced tumors had a larger tumor mass and exhibited a shorter latency period. This is the first report to describe that G6PD is a proto-oncogene. Our results provide a model to examine the causative role of G6PD misregulation in cellular proliferation and the interaction of G6PD with other gene products in the development of tumors.
封面
目錄
摘要
Abstract
第一章 緒論
Ⅰ、G6PD的介紹
(1)Glucose-6-phosphate dehydrogenase
(2)G6PD缺乏症
Ⅱ、研究目的
第二章 材料和方法
Ⅰ.細胞培養
Ⅱ.G6PD的基因轉染
Ⅲ.利用native gel elctrophoresis system分析人類表現
Ⅳ.Paraquat及TBH的細胞毒性測試
Ⅴ.細胞中酵素的活性
Ⅵ.測量lipid peroxidation的產物
Ⅶ.利用Flow cytometer測定細胞中的活性氧物質
Ⅷ.統計分析
Ⅸ.細胞的生長特質(growth properties)分析
Ⅹ.致癌性測試(tumorigenic assay)
第三章 G6PD在細胞抗氧化系統中所扮演的角色
Ⅰ、簡介
Ⅱ、結果
(1)人類G6PD在NTH 3T3細胞中的大量表現
(2)TBH和 paraquat 的細胞毒性
(3)細胞中抭氧化酵素的活性及NADPH和glutathione的濃度
(4)TBH處理後、細胞中NADPH和GSH濃度的變化
(5)TBH或paraquat處理後,細胞中氧化物的生成
(6)TBH所誘發的脂質過氧化
Ⅲ、討論
第四章 G6PD的高量表現造成NIH 3T3細胞的致癌化轉型
Ⅰ、簡介
Ⅱ、結果
(1)細胞的型態及生長曲線分析
(2)G6PD高量表現的細胞會形成transformed focus
(3)G6PD高量表現的細胞具有anchorage-independent growth的能力
(4)G6PD高量表現的細胞具有誘發癌症的能力
(5)G6PD在tumor中的持續高量表現
(6)大量表現突變過的G6PD無法造成細胞的轉型
(7)G6PD所造成的細胞致癌性轉型,可能是經由改變細胞中的氧化還原態
Ⅲ、討論
第五章、論文總結
Ⅰ、結論
Ⅱ、未來計畫
Tables & Figures
參考文獻
Aebi, H. (1984). Catalase in vitro. Methods in Enzymol. 105, 121-126.
Alessandrini, A., Hreulich, H., Huang, W., and Erikson, R. L. (1996). Mek1 phosphorylation site mutates active Raf-1 in NIH 3T3 cells. J. Biol. Chem. 271, 31612-31618.
Allison, A. C. (1960). Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature 186, 531-533.
Al-Naama, L. M., Al-Sadoon, I. A., and Al-Namma, N. N. (1987). Neonatal jaundice and glucose-6-phosphate dehydrogenase deficiency in Basrah. Ann. Trop. Paediatr. 7,134-138.
Arese, P., and De Flora, A. (1990). Denaturation of normal and abnormal erythrocytes II. Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin. Hematol. 27, 1-40.
Auvinen, M., Paasinen, A., Anderson, L. C., and H"ltt*, E. (1992). Ornithine decaboxylase activity is critical for cell transformation. Nature 360, 355-358.
Auvinen, M. Paasinen-Sohns, A., Kangas, A., Kangas, L. Saksela, O., Andersson, L. C., and H"ltt*, E. (1997). Human ornithine decarboxylase-overproducing NIH 3T3 cells induce rapidly growing, highly vascularized tumours in nude mice. Cancer Res. 57, 3016-3025
Baehner, R. L., Nathan, D. G., and Castle, W. B. (1971). Oxidant injury of caucasian glucose-6-phosphate dehydrogenase deficient- red blood cells by phagocytosing leukocytes during infection. J. Clin. Invest. 50, 2466-2473.
Bass, D. A., Parce, W. P., Dechatelet, L. R., Szejda, P., Seeds, M. C., and Thomas, M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. (1983). J. Immuol. 130, 1910-1917.
Benedetti, A., Comporti, M., and Esterbauer, H. (1980). Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidaiton of liver microsomal lipids. Biochim. Biophys. Acta 620, 281-296.
Beutler, E. (1978). Hemolytic Anemia in Disorders of Red Cell Metabolism. New York, NY, Plenum.
Beutler, E. (1959). The hemolytic effect of primaquine and related compounds. A review. Blood 14, 103.
Beutler, E. (1994). G6PD deficiency. Blood, 84, 3613-3636.
Bhat, G. B., Tinesley, S. B., Tolson, K., Patel, J. M., and Block, E. R. (1992). Hypoxia increases the susceptibility of pulmonary artery endothelial cells to hydrogen peroxide injury. J. Cell. Physiol. 151, 228-238.
Bilello, J., Freedman, V. H., and shin, S. (1977). Growth of murine sarcoma virus-transformed rat kidney cells in nude mice: absence of induction of host endogenous viruses. J. Natl. Cancer Inst. 58, 1691-1694.
Bienzle, U., Ayeni, O., Lucas, A. O., and Luzzatto, L. (1972). Glucose-6-phosphate dehydrogenase deficiency and malaria. Greater resistance of females heterozygous for enzyme deficiency and males with non-deficient variant. Lancet 1, 101-110.
Bishop, J. M. (1985). Viral oncogenes. Cell 42, 23-38.
Black, P. H. (1968). The oncogenic DNA viruses: a review of in vitro transformation studies. Annul. Rev. Microbiol. 22, 391-426.
Blackwell, R. Q., Blackwell, B. N., Yen, L., and Lee, H. F. (1969). Low incidence of erythrocyte G-6-PD deficiency in aborigines of Taiwan. Vox Sang 17, 310-313.
Bokun, R., Bakotin, J., and Milasinovic, D. (1987). Semiquantitative cytochemical estimation of glucose-6-phosphate dehydrogenase activity in benign diseases and carcinoma of the breast. Acta Cytol. 31, 249-252.
Brown, W. R., and Boon, W. H. (1968). Hyperbilirubinemia and kerinicterus in glucose-6-phosphate dehydrogenase deficienct neonates in Sinapore. Pediatrics. 41, 1055-1062.
Bus, J. S., Aust, S. D., and Gibson, J. E. (1974). Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Cell. Biochem. Func. 5, 101-107.
Calabro, V., Giacobbe, A., Vallone, D., Montanaro, V., Cascone, A., Filosa, S., and Battistuzzi, G. (1990). Genetic heterogeneity at the glucose-6-phosphate dehydrogenase deficiency locus in southern Italy: a study on a population from the Matera district. Human Genetics 86, 49-53.
Camardella, L., Carso, C., Rutigliano, B., Romano, M., Di Prisco, G., and Descalzi-Cancedda, F. 1988. Human erythrocytes glucose-6-phosphate dehydrogenase: Identification of a reactive lysyl residue labelled with pyridoxal-5*-phosphate. Eur. J. Biochem. 171, 485-489,
Camardella, L., Romano, M., Di Prisco, G., and Descalzi-Cancedda, F. (1981). Human erythrocyte glucose-6-phospahte dehydrogenase: labelling of a reactive lysyl residue by pyridoxal-5*-phosphate. Biochem. Biophy. Res. Commun. 103, 1384-138.
Camardella, L. Damonte, G., Carratore, V., Benatti, U., Tonetti, M., and Moneti, G. (1995). Glucose-6-phosphate dehydrogenase from human erythrocytes: identification of N-acetyl-alanine at the N-terminus of the protein. Biochem. Biophy. Res. Commun. 207, 331-338.
Canepa, L., Ferraris, A. M., Miglino, M., and Gaetani, G. F. (1991). Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochem. Biophys. Acta 1074, 101-104.
Carpentieri, U., Moore, R. L., and Nichols, M. M. (1974). Kernicterus in a newborn female with G-6-PD deficiency. J. Pediatr. 89, 854-855.
Carson, P. E., Flanagan, C. L., Ickes, C. E., and Alving, A. S. (1956). Enzymatic deficiency in primaquine sensitive erythrocytes. Science 124, 484-485.
Chang, J. G., Chiou, S. S., Perng, I., Chen, T. C., Liu, T. C., Lee, L. S., Chen, P. H., and Tang, T. K. (1992). Molecular characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency by normal and ampification created restriction sites: five mutations accounts for most G6PD deficiency cases in Taiwan. Blood 80, 1079-1082.
Chan, T. M., Chen, E., Tatoyan, A., Shargill, N. S., Pleta, M., and Hochstein, P. (1986). Stimulation of tyrosine specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals. Biochem. Biophys. Res. Commun. 139, 439-445.
Chang, J. G., Perng, I., Chiou, S. S., Chen, T. C., Liu, T. C., Lee, L. S., Chen, P. H., and Tang, T. K. (1991). Three mutations account for most of the affected Chinese with G6PD deficiency inTaiwan: Detection by natural and artificially created restriction recognition sites. Blood, 78, 87a (abstr, suppl 1).
Chen, L. B., Gallimore, P. H., and McDougall, J. D. (1976). Correlation between tumor induction and the large external transformation sensitive protein on the cell surface. Proc. Natl. acad. Sci. USA 73, 3570-3574.
Chen, H. L., Huang, M. J., Huang, C. S., and Tang, T. K. (1996). G6PD NangKang (517 T*C; 173 Phe*Leu): a new Chinese G6PD variant associated with neonatal jaundice. Hum. Hered. 46, 201-204.
Chen, H. L., Huang, M. J., Huang, C. S., and Tang, T. K. (1997). Two novel glucose 6-phosphate dehydrogenase deficiency mutations and association of such mutations with F8C/G6PD haplotype in Chinese. J. Formos. Med. Assoc. 96, 948-54
Chen, S. H., Lin, K. S., Lee, T. Y., and Chen, C. L. (1986). Glucose-6-phosphate dehydrogenase deficiency and neonatal hyperbilirubinemia in Chinese. Acta Pediatr. Sinica 27, 286-293.
Chiu, D. T. Y., Zuo, L., Chao, L., Chen, E., Louie, E., Lubin, B., Liu, T. Z., and Du, C. S. (1993). Molecular characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency in patients of Chinese descent and identification of new base substitution in human G6PD gene. Blood 81, 2150-2154.
Chiu, D. T. Y., Zuo, L., Chen, E., Chao, L., Louie, E., Lubin, B., Liu, T. Z., and Du, C. S. (1991). Two commonly occurring nucleotide base substitution in Chinese G6PD variants. Biochem. Biophy. Res. Commun. 180, 988-993.
Clark, E. A., and Brugge, J. S. (1995). Integrins and signal transduction pathways: The road taken. Science 268, 233-239.
Cocco, P. (1987). Does G6PD deficiency protect against cancer? A critical review. J. Epidemiol. Community Health 41, 89-93.
Cohen, G., Dembiec, D., and Marcus, J. (1970). Measurement of catalase activity in tissue extracts. Anal. Biochem. 34, 30-38.
Cohen, P., and Rosemeyer, M. A. (1969). Subunit interactions of glucose-6phosphate dehydrogenase from human erythrocytes. Eur. J. Biochem. 8, 8-15.
Comporti, M. (1985). Biology of disease. Lipid peroxidation and cellular damage in toxic liver injury. Lab. Invest. 53, 599-623.
Connolly, D. T., Stoddard, B. L., Harakas, N. K., and Feder, J.(1986). Human fibroblast-derived growth factor is a mitogen and chemo-attractant for endothelial cells. Anal. Biochem. 152, 136-140.
Coppen, D. E., Richardson, D. E., and Cousins, R. J. (1988). Zinc suppression of free radicals induced in cultures of rat hepatocytes by iron, t-butyl hydroperoxide, and 3-methylindole. Proc. Soc. Exp. Biol. Med. 189, 100-109.
Dern, R. J., Beutler, E., and Alving, A. S. (1954). The hemolytis effect of primaquine. II. The natural course of the hemolytic anemia and the mechanism of its self-limited character. J. Lab. Clin. Med. 44, 171.
Dessi, S., Batetta, B., Cherchi, R., Onnis, R., Pisano, M., and Pani, P. (1988). Hexomonophosphate shunt enzymes in lung tumors from normal and glucose-6-phosphate dehydrogenase-deficient subjects. Oncol. 45, 287-291.
Du, C. S., Xu, Y. K., Hua, X. Y., Wu, Q. L., and Liu, L. B. (1988) Glucose-6-phosphate dehydrogenase variants and their frquency in Guangdong, China. Hum. Genet. 80, 385-388.
Du, C. S., Chao. L. T., Louie, T. Z., and Chiu, D. T. Y. (1992). Molecular characterization of G6PD deficiency in patients of Chinese descent and identification of new base substitution in the human G6PD gene. Blood 80(suppl), 284a.
Dutu, R., Nedelea, M., Veluda, G., and Burcuket, V. (1980). Cytoenzymologic investigations on carcinomas of the cervix uteri. Acta Cytol. 24,160-166.
Eagle, H., Foley, G. E., Koprowski, H., Lazarus, H., Levine, E. M., and Adams, R. A. (1970). Growth characteristics of virus-transformed cells. Maximum population density, inhibition by normal cells, serum requirement, growth in soft agar and xenogeneic transplantability. J. Exp. Med. 131, 863-879.
Egan, S. E., Wright, J. A., Jarolim, L., Yanagihara, K., Bassin, R. H., and Greenberg, A. H. (1987). Transformation by oncogenes encoding protein kinases induces the metastatic phenotype. Science 238, 202-205.
Evans, C. H., and DiPaolo, J. A. (1976). Composition of nude mice with the host species for evaluation of the tumor of guinea pig and hamster cells transformed in vitro by chemical carcinogens. Cancer Res. 36, 128-131.
Feo, F., Pirisi, L., Pascale, R., Daino, L., Frasseto, S., and Garcea, R. (1984). Modulatory effect of glucose-6-phosphate dehydrogenase deficiency on the benz[a]pyrene toxicity and transforming activity for in vitro cultured human shin fibroblast. Cancer. Res. 38, 3419-3425.
Folkman, J., and Moscona, A. (1978). A role of cell shape in growth control. Cell 44, 489-496.
Freedman, V. H., Brown, A. L., Klinger, H. P., and Shin, S. I. (1976). Mass production of animal cells in nude mice with retention of cell specific markers. Exp. Cell. Res. 98, 143-151.
Freedman, V. H., and Shin, S. (1974). Cellular tumorigenesis in nude mice: correlation with cell growth in semi-solid medium. Cell 3, 355-359.
Fridovich, I., and Hassan, H. M. (1979). Paraquat and exacerbation. Trends. Biochem. Sci. 4, 113-115.
Friedman, M. J. (1979). Oxidant damage mediates variant red cells resistance to malaria. Nature 280, 245-247.
Grau, U. M. (1982). Structural interactions with enzyme. The pyridine Nucleotide Coenzymes (ed. By J. Everse, B. Anderson and K. S. You), Vol. 1, pp. 135-187. Academic Press, New York.
Griffith, O. W., and Meister, A. (1979). Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254, 7558-7560.
Gunning, P., Leavitt, J., Muscat, G., Ng, S. Y., and Kedes, L. (1987). A human beta-actin expression vector system directs high level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA. 84, 4831-4835.
Habig, W. H., Pabst, M. J., and Jakoby, W. B. Glutathione-S-transferase. The first enzyme step in mercapturic acid formation. (1974). J. Biol. Chem. 249, 7130-7139.
Hacker, H. J., Moore, M. A., Mayer, D., and Bannasch, P. (1982). Correlative histochemistry of some enzymes of carbohydrate metabolism in preneoplastic and neoplstic lesions in the rat liver. Carcinogenesis 3, 1265-1272.
Harris, H. (1986). The genetic analysis of malignancy. J. Cell. Sci., Suppl. 4, 431-444.
Heffetz, D., Bushkin, I., Dror, R., and Zick, Y. (1990). The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 265, 2896-2902.
Hirono, A., Kuhl, W., Gelbart, T., Forman, L., Fairbanks, V. F., and Beutler, E. (1989). Identificaiton of the binding domain for NADP+ of human glucose-6-phosphate dehydrogenase by sequence analysis of mutants. Proc. Natl. Acad. Sci. USA 86,10015-10017.
Holley, R. W., and Kiernan, J. A. (1968). "Contact inhibition" of cell division in 3T3 cells. Proc. Natl. Acad. Sci. USA 60, 300-304.
Huang, C. S., Hung, K. L., Huang, M. J., Li, Y. C., Liu, T. H., and Tang, T. K. (1996). Neonatal juandice and molecular mutations in glucose-6-phosphate dehydrogenase deficiency deficient newborn infants. Am. J. Hematol. 51, 19-25.
Hughes, E. C. (1976). The effect of enzymes upon metabolism, storage, and release of carbohydrates in normal and abnormal endometria. Cancer 38, 487-502.
Jewell, S. A., Di Monte, D., Richelmi, P.; Bellomo, G., and Orrenius, S. (1986). tert-Butylhydroperoxide-induced toxicity in isolated hepatocytes: contribution of thiol oxidation and lipid peroxidation. J. Biochem. Toxicol. 1, 13-22.
Jeffery, J., Hobbs, L., and Jrnvall, H. (1985). Glucose-6-phosphate dehydrogenase form Saccharomyces cerevisiae: Characterization of a reactive lysyl residue labeled with acetylsalicylic acid. Biochemictry, 24, 666-671.
Jeffery, J., Persson, B., Wood, I., Bergman, T., Jeffery, R., and J"rnvall, H. (1993). Glucose-6-phosphate dehydrogenase: Structure-function relationships and the Pichia jadinii enzyme structure. Eur. J. Biochem. 212, 41-49.
Kaplan, M., Chb, M. B., and Ayala Abramov, M. D. (1992). Neonatal hyperbilirubinemia associated with glucose-6-phosphate dehydrogenase deficiency in Sephardic-Jewish neonates: Incidence, severity, and the effect of phototherapy. Pediatrics 90, 401-405.
Kattamis, C. A., and Tjortjatou, F. (1970). The hemolytic process of viral hepatitis in children with normal or deficient glucose-6-phosphate dehydrogenase activity. J. Pediatr. 77, 422-430.
Kehrer, J. P., and Lund, L. G. (1994). Cellular reducing equivalents and oxidative stress. Free Radic. Biol. Med. 17, 65-75.
Kennedy, K. A., Crouch, L, S., and Warshaw, J. B. (1989). Effect of hyperoxia on antioxidants in neonatal rat type II cells in vitro and in vivo. Pediatr. Res. 26, 400-403.
Kirkman, H. N., Galiano, S., and Gaetani, G. F. (1987). The function of catalase-bound NADPH. J. Bio. Chem. 262, 660-666.
Kirkman, H. N., and Hendrickson, E. M. (1962). Glucose-6-phosphate dehydrogenase from human erythrocytes. II. Subactive states of the enzyme from normal persons. J. Biol. Chem. 237, 2371.
Kirkman, H. N., and Gaetani, G. F. (1986). Regulation of glucose-6-phosphate dehydrogenase in human erythrocytes. J. Biol. Chem. 261, 4032
Kirkland, D. J., and Pick, C. R. (1973). The histological appearance of tumors derived from rat embryo cells transformed in vitro spontaneously and after treatment with nitrosomethylurea. Br. J. cancer 28, 440-452.
Kuo, W. Y., and Tang, T. K. (1998). Effects of G6PD overexpression in NIH 3T3 cells treated with ter-butyl hydroperoxide or paraquat. Free Radic. Biol. Med. in press
Kurosawa, K., Shibata, H., Hayashi, N., Sato, N., Kamada, T., and Tagawa, K. (1990). Kinetics of hydroperoxide degradation by NADP-GSH system in mitochondria. J. Biochem. 108, 9-16.
Lander, H. M., Sehajpal, P., Levine, D. M., Novogrodsky, A. (1993). Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J. Immunol. 150, 1509-1516.
Lawrence, R. A., and Burk, R. F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71, 952-958.
Lazaris-Karatzas, A., Montine, K. S., and Sonenberg, N. (1990). Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5* cap. Nature 345, 544-547.
Lee, T. C., Lai, G. J., Kao, S. L., Ho, I. C., and Wu, C.W., (1993). Protection of a rat epithelial cell line from paraquat toxicity by inhibition of glucose-6-phosphate dehydrogenas. Biochem. Pharmacol. 45, 1143-1147.
Lee, T. C., Shih, L. Y., Huang, P. C., Lin, C. C., Blackwell, B. N., Blackwell, R. Q., and Hsia, D. Y. Y. (1962). Glucose-6-phosphate dehydrogenase deficiency in Taiwan. Am. J. Hum. Genet. 15, 126-132.
Liu, J. J., Chao, J. R., Jiang, M. C., Ng, S. Y., Yen, J. J. Y., and Yang-Yen, H. F. (1995). Ras transformation results in elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol. Cell. Biol. 15, 3654-3663.
Liu, T. H. (1994). Molecular analysis of G6PD mutation and polymorphism in Taiwan Chinese and aborigines. MS thesis, National Taiwan University, Taipei.
Lo, Y. S., Lu, S. S., Chen, L. Y., and Tsai, L. T. (1990). Clinical studies of neonatal hyperbilirubinemia treated with blood exchange transfusion. Kaohsiung J. Med. Sci. 6, 556-564.
Lo, Y. S., Lu, S. S., Chiou, B. H., Chen, T. T., and Chang, J. G. (1994). Molecular charaterization of glucose-6-phosphate dehydrogenase deficiency in Chinese infants with or without neonatal hyperbilirubinaemia. Br. J. Haematol. 86, 858-862.
Lowry, O. H., Passonneau, J. V., and Rock, M. A. (1961). The stability of pyrimidine nucleotides. J. Biol. Chem. 236, 2756-2759.
Lu, T. C., Wei, H., and Blackwell, R. Q. (1966). Increased incidence of severe hyperbilirubinemia among newborn Chinese infants with G-6-PD deficiency. Pediatrics 37, 994-999.
Luzzatto, L. (1979). Genetics of red cells and susceptibility to malaria. Blood 54, 961-976.
Luzzatto, L. and Battistuzzi, G. (1985) Glucose-6-phosphate dehydrogenase. Adv. Hu. Genetics 14, 217-329.
Luzzato, L.; Testa, U. (1978). Human erythrocytes glucose-6-phosphate dehydrogenase: structure and function in normal and mutant subjects. Curr. Top. Haematol. 1, 1-70.
Luzzatto, L., Usanga, E. A., and Reddy, S. (1969). Glucose-6-phosphate dehydrogenase deficient red cells: Resistance to infection by malarial parasites. Science 164, 839-842.
MacConkey, D. J., and Orrenius, S. (1994). Signal transduction pathways to apoptosis. Trends Cell. Biol. 4, 370-375.
Macpherson, I., and Montagnier, L. (1964). Agar suspension culture for the selective assay of cells transformed by polyma virus. Virology 23, 291-294.
Magon, A, M., Leipzig, R. M., Zannoni, V. G., and Brewer, G. J. (1981). Interaction of glucose-6-phosphate dehydrogenase deficiency with drug acetylation and hydroxylation reactions. J. Lab. Clin. Med. 97, 764-770.
Mamlok, R. J., Mamlok, V., Mills, G. C., Daeschner, C. W., Schmalsteig, F. C., and Anderson, D. C. (1987). Glucose-6-phosphate dehydrogenase deficiency, neutrophil dysfunction and Chromobacterium violaceumsepis. J. Pediatr. 111, 852-854.
Marks, P. H., and Banks, J. (1960). Inhibition of mammalian glucose-6-phosphate dehydrogenase by steroids. Proc. Natl. Acad. Sci. USA 46, 447-452.
Martin, G. S. (1970). Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227, 1021-1023.
Martini, G., Toniolo, D., Vulliamy, T., Luzzatto, L., Dono, R., Viglietto, G., Paonessa, G., D*Urso, M., and Persico, M. G. (1986). Structural analysis of the X-linked gene encoding human glucose-6-phosphate dehydrogenase, Eur. Mol. Biol. Organisation J. 5, 1849-1855.
Marts, E., and Steinberg, M. S. (1972). The role of cell-cell contact inhibition of cell division: a review and new evidence. J. Cell. Physiol. 79, 189-210.
Masaki, N., Kyle, M. E., and John. L. F. (1989). tert-Butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Arch. Biochem. Biophy. 269, 390-399.
Mason, P. J., Vulliamy, T. J., Foulkes, N. S., Town, M., Haidar, B., and Luzzatto, L. (1988). The production of normal and variant human glucose-6-phospahte dehydrogenase in cos cells. Eur. J. Biochem. 178, 109-113.
Mbemba, F., Houbion, A., Rase, M., and Remacle, J. (1985). Subcellular localization and modification with ageing of glutathione peroxidase, and glutathione reductase activities in human fibroblasts. Biochem. Biophy. Acta 838, 211-220.
Meloni, T., Cutillo, S., Testa, U., and Luzzatto, L. (1987). Neonatal jaundice and severity of glucose-6-phosphate dehydrogenase deficiency in Sardinian babies. Early Hum. Dev. 15, 317-322.
Meyer, M., Pahl, H. L., and Baeuerle, P. A. (1994). Regulation of the transcription factors NF-kB and AP-1 by redox changes. Chem. Biol. Interact. 91, 91-100.
Meyer, M., Schreck, R. Baeuerle, P. A. (1993). H2O2 and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12, 2005-2015.
Michiels, C., and Remacle, J. (1991). Cytotoxicity of linolieic acid peroxide, malondialdehyde and 4-hydroxynonenal towards human fibroblasts. Toxicol. 66, 225-234.
Misra, H. P., and Gorsky, L. D. (1981). Protection of a rat epithelial cell line from paraquat toxicity by inhibition of glucose-6-phosphate dehydrogenase. J. Biol. Chem. 256, 9994-9998.
Monteiro, H. P., Ivaschenko, Y., Fisher, R., and Stern, A. (1991). A inhibition of protein tyrosine phosphatase activity by diamide is reversed by epidermal growth factor in fibroblasts. FEBS Lett. 295, 146-148.
Monteiro, H. P., and Stern, A. (1996). Redox modulation of tyrosine phosphorylation-dependent signal transduction pathway. Free Radic. Biol. Med. 21, 323-333.
Nakamura, H., Nakamura, K., and Yodoi, J. (1997). Redox regulation of cellular activation. Annu. Rev. Immuol. 15, 351-369.
Naylor, C. E., Rowland, P., Basak, A. K., Gover, S., Mason, P. J., Bautista, J. M., Vulliamy, T. J., Luzzato, L. and Adams, M. J. (1996). Glucose-6-phosphate dehydrogenase mutations causing emzyme deficiency in a model of the tertiary of the human enzyme. Blood 87, 2974-2982
Neloni, T., Forteleoni, G., Ena, F., and Meloni, G. F. (1991). Glucose-6-phosphate dehydrogenase deficiency and bacterial infections in northern Sardia. J. Pediatr. 118, 909-911.
Noda, T., Yajima, H., and Ito, Y. (1988). Progression of the phenotype of transformed cells after growth stimulation of cells by a human papillomavirus type 16 gene function. J. Virol. 62, 313-324.
Oertel, G. W., and Rebelein, I. (1969). Effects of dehydroepiandrosterone and its conjugates upon the activity of glucose-6-phosphate dehydrogenase in human erythrocytes. Biochim. Biophhys. Acta 184, 459-460.
Pai, G. S., Sprenkle, J. A., Do, T. T., Mareni, C. E., and Migeon, B. R. (1980). Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of nonrandom X chromosome expression from studies of a human X-autosome translocation. Proc. Natl. Acad. Sci. USA 77, 2810-2813.
Pandolfi, P. P., Sonati, F., Rivi, R., Mason, P., Grosveld, F., and Luzzatto, L. (1995). Targeted disruption of the housekeeping gene encoding glucose-6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14, 5209-5215.
Pannacciulli, I., Tizianello, A., Ajmar, F., and Salvidio, E. (1965). The course of experimentally-induced hemolytic anemia in a primaquine-sensitive caucasian. A case study. Blood 25, 92.
Pantelouris, E. M. (1968). Absence of thymus in a mouse mutant. Nature 217, 370-371.
Rygaard, J., and Povlsen, C. O. (1969). Heterotransplantation of a human malignant tumour to "Nude" mice. Acta Pathol. Microbiol. Scand. 77, 758-760.
Pashko, L. L., Rovito, R. J., Williams, J. R., Sobel, E. L., and Schwartz, A. G. (1984). Dehydroepiandrosterone (DHEA) and 3-methyl-androst-5-en-17-one inhibitors of 7,12-dimethylbenz[a]anthracene (DMBA)-initiated an 12-O-tetradecanoylphorbol-13-acetate (TPA)-pomoted skin papilloma formation in mice. Carcinogenesis 5, 463-466.
Perng, L. I., Chiou, S. S., Liu, t. C., and Chang, J. G. (1992). A novel C to T substitution at nucleotide 1360 of cDNA which abolishes a natural Hha I site accounts for a new G6PD deficiency gene in Chinese. Hum. Mol. Genet. 1, 205.
Persico, M., G., Viglietto, G., Martini, G., Toniolo, D., Paonessa, G., Moscatelli, C., Dono, R., Vulliamy, T., Luzzatto, L., and D*Urso, M., (1986) Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5*non-coding region. Nucleic Acids Res. 14, 2511-2522 and 7822.
Piomelli, S. (1986). G6PD-related neonatal jaundice. In Yoshida A., Beutler, E. (eds): Glucose-6-phosphate dehydrogenase. Orlando, FL: Academic Press, 95-108.
Reed, W. R. (1969). Glutathione and hexose monophosphate shunt in phagocytizing and hydrogen peroxide treated rat leukocytes. J. Bio. Chem. 244, 2459-2464.
Rosenbloom, B. E., Weingarten, S., Rosenfelt, F. P., and Weinstein, I. M. (1988). Severe hemolytic anemia due to glucose-6-phosphate dehydrogenase deficiency and Epstein-Barr virus infection. Mt. Sinai. J. Med. 55, 404-405.
Roth, E. F., Raventos-Suarez, C., Rinaldi, A., and Nagel, R. L. (1983). Glucose-6-phosphate dehydrogenase deficiency inhibits in vitro growth of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 80, 298-299.
Rowland, P., Basak, A. K., Gover, S., Levy, H. R. and Adams, M. J. (1994). The three-dimensional structure of glucose-6-phosphate dehydrogenase from Lecunostoc mesenteroids refined at 2.0 * resolution. Structure 2, 1073-1087
Roy, D., and Liehr, J. G. (1988). Characterization of drug metabolism enzymes in estrogen-induced kidney tumors in male Syrian hamsters. Cancer Res. 48, 5726-5729.
Ruwende, C., Khoo, S. C., Snow, R. W., Yates, S. N. R., Kwiatkowski, D., Gupta, S. Warn. P., Allsopp, C. E. M., Gilbert, S. C., Peschu, N., Newbold, C. I., Greenwood, B. M., Marsh, K., and Hill, A. V. S. (1995). Natural selection of heterozygous for G6PD deficiency in Africa by resistance to severe malaria. Nature 376, 246-249
Rygaard, J., and Povlsen, C. O. (1969). Heterotransplantation of a human malignant tumor to "Nude" mice. Acta Pathol. Microbiol. Scand. 77, 758-760.
Schenk, H., Klein, M., Erdbrugger, W., Dr"ge, W., Schulze-Osthoff, K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kB and AP-1. Proc. Natl. Acad. Sci. USA 91, 1672-1676.
Shimosato, Y., Kameya, T., Nagai, K., Hirohashi, S., Koide, T., Hayashi, H., and Nomura, T. (1976). Transplantation of human tumors in nude mice. J. Natl. Cancer Inst. 56, 1251-1260.
Shin, S. I., Freedman, V. H., Risser, R., and Pollack, R. (1975). Tumorigenecity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc. Natl. Acad. Sci. USA 72, 4435-4439.
Smith, P., Heath, D., and Kay, J. M. (1974). The pathogenesis and structure of paraquat-induced pulmonary fibrosis in rats. J. Pathol. 114, 57-67.
Stamatoyannopoulos, G., Fraser, G. R., Motulsky, A. G., Fessas, P., Akrivakis, A., and Papayannopoulou, T. (1966). On the familial predisposition to favism. Am. J. Hum. Genet. 18, 253-263.
Stanton, R. C., Seifter, J. L., Boxer, D. C., Zimmerman, E., and Cantley, L. C. (1991). Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. J. Biol. Chem. 266, 12442-12448.
Stegeman, J. J., Binder, R. L., and Orren, A. (1979). Hepatic and extra microsomal electron transport components and mixed-function oxygenases in the marine fish Stenotomus versicolor. Biochem. Pharmacol. 28, 3431-3439.
Stiles, C. D., Desmond, W., Chuman, L. M., Sato, G., and Saier, M. H. (1976). Growth control of heterologous tissue cells in the congenitally athymic nude mice. Cancer Res. 36, 1353-1360.
Stoker, M., O*Neill, C., Berryman, S., and Waxman, V. (1970). Anchorage and growth regulation in normal and virus-transformed cells. Int. J. Cancer 3, 683-693.
Stryer, L. (1995). Biochemistry. 4th edn. W. H. Freeman and Co., New York, NY.
Sun Y. (1990). Free radicals, antioxidant enzymes, and carcinogenesis. Free Rad. Biol. Med. 8, 583-599
Sun, Y., and Oberley, L. W. (1996). Redox regulation of transcriptional activators. Free Radic. Biol. Med. 21, 335-348.
Swanstrom, R., Parker, R. C., Varmus, H. E., Bishop, J. M. (1983). Transduction of a cellular oncogene-the genesis of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 80,2519-2523.
Swezey, R. R., and Epel, D. (1988). Enzyme stimulation upon fertilization is revealed in electrically permeablized sea urchin eggs. Proc. Natl. Acad. Sci. USA 85, 812-816.
Tang, T. K., Huang, C. S., Huang, M. J., Tam, K. B., and Tang, C. J. C. (1991). Identification and diagnosis of glucose-6-phosphate dehydrogenase mutations in Chinese. Blood 78, 86a (abstr, suppl 1).
Tang, T. K., Huang, C. S., Huang, M. J., Tam, K. B., Yeh, C. H., and Tang, C. J. C. (1992). Diverse point mutations results in glucose-6-phosphate dehydrogenase (G6PD) polymorphism in Taiwan. Blood 79, 2135-2140.
Tang, T. K., Yeh, C. H., Tang, C. J. C., Hsu, M., Cheng, T. A., and Chen, K. H. (1995). Molecular basis of glucose-6-phosphate dehydrogenase (G6PD) deficiency in three Taiwan aboriginal tribes. Hum. Genet. 95, 630-632.
Tang, T. K., Yeh, C. H., Huang, C. S., and Huang, M. J. (1994). Expression and biochemical characterization of human glucose-6-phosphate dehydrogenase in Escherichia coli: a system to analyze normal and mutant enzymes. Blood 83, 1436-1441.
Takizawa, T., Huang, I. Y., Ikuta, T., and Yoshida, A. (1986). Human glucose-6-phosphate dehydrogenase: Primary str