学者和航海者都十分清楚,如果能在海面上准确测量出天体的位置,那么海员们便可以比较肯定地知道他们所在的纬度。要做到这一点,需要的是精密的测量仪器。
托勒密 曾经描绘过 星盘 (又叫测星仪)。体积大些的星盘用在天文台里,体积小的用在船上。星盘的使用需要三个人合作——一个人抓住星盘上的拇指环,一个人瞄准,另外一个人读出表盘上的结果。当船晃动得比较剧烈时,得出的结果自然也就不是很准确。只要可能,海员们就会上岸测量。
古代的天文学家使用 十字标 尺来测量星星的纬度,后来水手们也把它应用于航海中。这件仪器由一根标尺和一个十字形尺组成,十字形尺较低的一端置于水平位置。沿着标尺观察天体的同时,滑动十字形尺直到它在你的视野里接触到观察物(太阳或星星),然后读出标尺上的度数。这种仪器只需一个人便可以操作。
星盘 和十字标尺都需要观察者直接观察太阳。晴天,过强的光线会使观测无法进行。为了解决这个问题,英格兰船长、 航海家 约翰·戴维斯 发明了背标尺。它由一根标尺和一根可以滑动的横木制成。观察者观测时先背朝太阳,然后滑动横木直到它在前方的小盘里投下阴影。通过这种方法,观察者可以观测地平线。
约翰·戴维斯还在一位来自 剑桥 的数学家爱德华·莱特的帮助下发明了 象限仪 。这件仪器的横木上有一只目镜,通过目镜,观察者可以观测地平线和被反射的太阳。
克洛伊希克的水文地理学家皮埃尔·布哥尔对象限仪做了进一步改进,改进后的象限仪使观察者通过目镜能看到太阳落在地平线上。
在英格兰的约翰·哈德雷发明了八分仪,并于1732年首次试用。它由一部 反射望远镜 和一架酒精水准器组成。这件仪器比以前海上用过的其它任何仪器都要更加精确。
测量仪器的概念其基本内容包括:精度、误差、测量标准器材、 长度测量 角度测量 、形状测量、传统光学仪器。在 精密测量 上的应用等等。
测量仪器有接触试和光学试测量两种(用的最多) 接触试:一般测量工具和3D测量工具( 三坐标测量机 又叫 三次元 )三坐标测量机又叫三次元 ,它可以测量很多复杂的空间尺寸:如模具和汽车产品。

测量仪器 电子测量仪

电子测量仪器 具有独特的关联战略性产业,它自身的发展好坏,对整个国民经济特别是 电子信息产业 的发展有着十分明显的影响。我国的电子测量仪器市场庞大,需求量大,电子测量仪器对电子信息产业的发展起到至关重要的作用。
国内电子计测技术及电子测量仪器的发展迅速,遍及各行各业,第一、电子计测技术基础理论研究:新的测试理论和方法研究、人工智能理论研究、频率基溯源与 标准器 获得方法研究、新型测控总线及系统结构研究、测量与仪器标准的研究与制定等都是今后在理论研究方面的重点。第二、电子计测技术的发展:发展较快的技术有先进测控总线技术、数字信号处理新技术、综合测试与故障诊断新技术、光频标和精密时频测试新技术等。第三、二类重要 电子测量仪器 矢量网络分析仪 的一个重要发展方向是构建以矢量网络分析仪为核心的自动测量技术和 自动测试系统 ;另外,矢量网络分析仪已走出传统的线性网络的应用领域,而在非线性、大功率网络的测试和分析中发挥着重要作用。调制域分析仪器是当今唯一能直接对 通信传输 中随时间而变化的晃动进行精确测量的技术,尤其是在军事电子测试领域更有其重要的意义。第四、电子测量仪器现代生产技术的发展:仪器产品的设计和生产水平是衡量一个国家科技工业基础和工业能力的重要标志,贯穿于整个产品生产的全过程和 全寿命周期 中。今后在仪器仪表生产技术的研究中要注意解决好产品设计和过程监管模式问题,研究新型的仪用器件,研制高精度和高质量的仪器仪表专用元器件、零部件和整机的质量检验设备,研究虚拟试验验证和工程化验证技术,研究先进的生产工艺和流程,研究稳定性、可靠性、 可维护性 和可测性新的评估方法,以及产品的标准化认证体制。第五、 电子测量仪器 综合测试系统:综合测试应将研究的重点放在综合测试系统的体系优化研究,测控系统的统一性和整体性技术研究,传感器信息处理和 多传感器数据融合技术 研究,大区域现场测试的分布式网络互联、触发、同步等技术研究,以及基于合成仪器与系统的可重构测控系统技术研究等多个方面。
中国电子测量仪器处于新中国成立以来第二次发展机遇。主要源于中国经济的发展,中国经济出现了两个变化:一是产业要升级,二是产业要自主创新。一个产业从原材料的选定、生产过程的监控、产品的测试、行业运营都需要电子测量仪器完成,因此电子测量仪器肩负着其它产业升级、自主创新的历史使命。

测量仪器 二次元

手动影像
手动影像测量仪 依靠人工操作 控制测量 平台的X、Y轴的移动,来获取被测物体的光学影像,通过 光学显微镜 将其放大,经过CCD摄像系统将放大后的物体影像送入计算机后,能高效地检测各种复杂工件的轮廓和表面形状尺寸、角度及位置,进而读取出需要的 几何量 尺寸。
自动影像
自动影像测量仪是在手动影像测量仪基础上,改人工控制为电脑系统控制X、Y、Z轴的移动,在选取被测物体的轮廓、角度等几何量时,更为精确和方便快捷。已经成为国内使用最广泛的 影像测量仪 种类,并有取代 手动影像测量仪 的趋势。
对于测量仪器的学习要求,不仅要了解了基本测绘工作地全过程,更要系统地掌握了测量仪器操作、数据处理、 施工放样 等基本技能。测量要求认真、仔细、精确、严谨,很小的错误也会在工程中造成很严重的后果,所以在测量工作中我们都必须要有认真严谨的态度和吃苦耐劳的精神。

测量仪器 三坐标测量仪

三坐标测量仪 依操作方式分类有手动、马达驱动和 CNC 等三种型式。
手动式
操作者用手握住主轴使其沿着轴移动。测量时,需注意探头与工件间测量压力、及探头移动因加速度所造成轴产生弯曲导致 测量误差
马达驱动式
马达驱动式三坐标测量仪一般可由游戏杆控制。它具有高 测量精度 、容易操作、且提供教导式测量等优点。
CNC式
CNC式三坐标测量仪除了具有马达驱动式的功能之外,还可自动依照计算机所预先设定的程序执行测量,甚至有些厂商出品的三坐标测量仪,也提供了自动装拆工件。 CNC 三坐标测量仪 除提供尺寸测量(点到点的测量)外,也可作曲面的轮廓测量(点到点的测量及扫瞄测量)。
光学试测量:可避免接触试测量中产品的变形和一些接触试测量无法完成的工作, 产品有: 二次元 ,三维激光抄数机等。
长度计量仪器的相关概述
根据长度测量的基本内容可以知道,长度计量就是要将测量值同被测量的真值进行对比,并将对比的结果作为被测量对象的量值来进行实验的一个过程。通常而言在具体长度测量中,操作的基础是被测量物的基面,主要是由点和线共同构成的。因此在具体的长度测量实践中,第一件事情就是要明确测量的基面,只有在做好基面工作的基础上才能进行它同另一面距离的测量。接下来需要考虑的就是测量工件如何完成定位的问题,要保证工件的位置能够很好的完成测量,不能增加测量的难度,要在最简单的方式下提高测量的精准度。对于测量基面的选择,必须要严格依照相关原则,确保设计和工艺,以及测量和装配等基面的高度一致。但是在具体的实践操作中,由于各种不稳定因素的影响,工艺基面同设计基面常常会出现不一致的现象,这也就造成了测量基面的变化。与此同时,为了进一步提高长度量值之间的准度,还要在健全长度基准的同时,建立各式各样的标准器,其中下一级别的标准器精度是要低于上一级的,所以在数量上下一级别的标准器是要远多于上一级标准器的。借助这种逐级对比的形式,就可以将标准器所呈现的单位量值进行由上到下的输送,并最终将其应用到长度仪器和计量器具中。
在长度计量仪器测量的误差中,通常会以下面几种方式来进行表示。其中一种方式就是借助量值来表示,之后再用最终测量得到的量值来表示同实际值中间出现的误差。另外一种表示方式就是比值,其实就是将绝对误差值同实际值进行比的一种方法,因此通过这种方式表示出来的误差又可以被叫做相对误差。比如我们在测量长度的实际操作中,使用的是激光干涉仪器,那么最大的相对误差值应该是千万分之一。除此之外当测量的条件已经被明确规定的时候,一米长度的测量误差是需要不小于零点一微米的。除了上述两种表示方法之外,还有一种就是精度。在长度计量仪器测量误差中,精度的叫法其实是一种简称,它是将最后的测量结果同被测量的真值进行比较,并根据对比程度以及准确度来进行表示的,也可以理解为是测量结果相对于被测量长度值的偏离程度,因此这种方式其实是将测量的正确度和精准度结合到了一起,所以也被成为精度。在长度计量仪器测量过程中,如果系统的误差已经做了调整,那么就需要通过使用不确定度来替代精确度进行表示。其中不确定度指的是由于测量误差的存在,而对被测量值不能进行肯定的程度,相反的也可以用它来表示测量结果的可信程度。作为测量结果的一个重要指标,不确定度越小,那么测量结果同被测量真值是越一致的,而不确定度越大,那么测量结果的可信程度就越低。
2)长度测量仪器的使用和保养
使用长度测量仪器进行测量的时候,如果使用方法不当会使测量结果产生误差。比如在卧式测长仪中,需要用标准的环规和量块附件组合成一个和被测环规大小一样的尺寸,将其和被测环规进行比较测量。这种测量方式除了会产生 尺寸测量仪器 的误差之外,还会产生对准误差。导致测量存在误差的影响因素有很多,比如检测现场的亮度、衬度、测量仪器刻线的质量、对线的方式,以及测量人员的视力等等。另外,如果没有对长度测量仪器进行正确的保养,会使测量仪的刻线以及精度产偏差,影响测量的结果。因此无论是在使用还是在存放过程中,都必须要对长度测量仪器进行良好的保养。
想要实现良好的温度控制,可以室内安装恒温装置,以对温度的变化及时了解,以做到在温度出现突然变化的时候可能及时停止测量。同时,对于测量环境中的开关门次数也要进行控制,因为空气的流动也会对温度产生影响,导致测量出现误差。另外还要将测量人员的温度降低,减少测量人员身体温度对周围温度的影响,以保证测量环境中温度的稳定性,提升测量的精度,达到最大化降低误差的效果。所以在进行测量的时候,测量人员减少大浮动运动,在降低自身温度的同时,避免因为动作过大影响空气的流动。第二,要确保工件和标准器温度一致。被测量的工件要和标准器的温度一致,同时要保证在特定的情况下,工件和标准器要保持等温。因为只有这两者的温度一致,才能确保测量结果的准确性。因为每次测量的工件尺寸大小不同,所以在测量的时候,如果工件的尺寸大,那相应的温度的偏差就要降低。相反,如果工件的尺寸小,那相应的测量温度偏差可以适当提升,但绝对不能超过正常误差的范围。若是测量环境内的温度偏差过大,那工件的尺寸就会产生很大的变化,而且还会对测量的精度产生一定的影响。所以,想要保证测量的精度,就必须要控制好测量环境的温度变化。尤其是不要出现温度的突然变化,因此在进行测量之前要先找好温度适合的测量环境,最大化地降低突发状况的发生。