戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 引用本文: 戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 Citation: Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science , 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 引用本文: 戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 Citation: Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science , 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 作者简介:

戴磊(1983-), 男, 博士研究生, 从事多孔介质结构表征、传递过程与岩土方面研究.ORCID: 0000-0002-1692-270X.E-mail: davy202628@163.com

通讯作者: 王贵玲, E-mail: guilingw@163.com

中图分类号: P341

为定量获得土壤结构对其水力性质的指示作用,室内实验选用华北平原子牙河流域原状土样为研究对象,用张力计法和激光粒度分析仪分别测定土壤水分特征曲线和样品粒度分布,基于分形理论计算土壤粒度分布的分形维数,采用实验测定与模型验证相结合的方法对水分特征曲线进行分析.结果表明,土壤颗粒粒度分布在[10 μm,50 μm]区间内的分段分维值是表征土壤粒度累积分布显著上升段特征的关键参数,与0~80 kPa吸力范围内的土壤水分特征曲线幂函数模型拟合参数( a b )有极显著相关关系.研究区内土壤水分特征曲线以分形形式表达的幂函数模型为: θ =100.78×(3- D ) S ( D -3)/3 ,利用土壤结构分形特征能够有效指示其水力性质.

土壤 /  分维 /  粒度分布 /  土壤水分特征曲线 / Abstract: In order to understand the indicative effect of soil structure on its hydraulic properties, undisturbed soil samples from the Ziya-River basin in the North China plain were selected as the research objects. The soil water characteristic curve was measured by tension meter method, and the particle size distribution of soil samples was measured by laser particle size analyzer. The fractal dimension of soil particle size distribution was calculated based on fractal theory. Soil water characteristic curve was analyzed by experimental measurement and model verification. The fractal dimension of soil particle size distribution in the range of[10 μm, 50 μm] is the key parameter to characterize the characteristics of the significant rising section of soil particle size distribution, which is significantly correlated with the fitting parameters ( a , b ) of the power function model of soil water characteristic curve in the suction range of 0-80 kPa. The power function model expressed by the fractal form of soil water characteristic curve in the study area is: θ =100.78×(3- D ) S ( D -3)/3 , and the fractal characteristics of soil structure can effectively indicate its hydraulic properties.

Key words: soil /  fractal theory /  soil particle size distribution /  soil water characteristic curve /  hydrogeology  Ding, Y. K., Rong, N., Shan, B. Q., 2016. Impact of Extreme Oxygen Consumption by Pollutants on Macroinvertebrate Assemblages in Plain Rivers of the Ziya River Basin, North China. Environmental Science and Pollution Research , 23(14): 14147-14156. https://doi.org/10.1007/s11356-016-6404-z Du, S. H., Shi, Y. M., Guan, P., 2019. Fluid Filling Rule in Intra-Granular Pores of Feldspar and Fractal Characteristics: A Case Study on Yanchang Formation Tight Sandstone Reservoir in Ordos Basin. Earth Science , 44(12): 4252-4263 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912035.htm Ersahin, S., Gunal, H., Kutlu, T., et al., 2006. Estimating Specific Surface Area and Cation Exchange Capacity in Soils Using Fractal Dimension of Particle-Size Distribution. Geoderma , 136(3-4): 588-597. https://doi.org/10.1016/j.geoderma.2006.04.014 Fu, X. L., Shao, M. G., Lu, D. Q., et al., 2011. Soil Water Characteristic Curve Measurement without Bulk Density Changes and Its Implications in the Estimation of Soil Hydraulic Properties. Geoderma , 167-168: 1-8. https://doi.org/10.1016/j.geoderma.2011.08.012 Gardner, W. R., Hillel, D., Benyamini, Y., 1970. Post-Irrigation Movement of Soil Water: 1. Redistribution. Water Resources Research , 6(3): 851-861. https://doi.org/10.1029/wr006i003p00851 Hao, C., Liang, Y. Y., Meng, W. Q., et al., 2009. Relations between Plant Community Characteristic and Soil Physicochemical Factors in Natural Wetlands of Binhai New District, Tianjin. Wetland Science , 7(3): 266-272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXSD200903011.htm He, Y. J., Lin, W. J., Wang, G. L., 2013. In-Situ Monitoring on the Soil Water-Heat Movement of Deep Vadose Zone by TDR100 System. Journal of Jilin University ( Earth Science Edition ), 43(6): 1972-1979 (in Chinese with English abstract). Huang, G. H., Zhan, W. H., 2002. Modeling Soil Water Retention Curve with Fractal Theory. Advances in Water Science , 13(1): 55-60 (in Chinese with English abstract). Jin, T. X., Cai, X., Chen, Y., et al., 2019. A Fractal-Based Model for Soil Water Characteristic Curve over Entire Range of Water Content. Capillarity , 2(4): 66-75. https://doi.org/10.26804/capi.2019.04.02 Lin, D., Jin, M. G., Ma, B., et al., 2014. Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters. Earth Science , 39(6): 760-768 (in Chinese with English abstract). http://www.researchgate.net/publication/288539192_Characteristics_of_infiltration_recharge_at_thickening_vadose_zone_using_soil_hydraulic_parameters Ma, C. M., 2013. Experimental Instruction of Vadose Hydrology. China University of Geosciences Press, Wuhan (in Chinese). Mandelbrot, B. B., 1983. The Fractal Geometry of Nature (Revised and Enlarged Edition). WH Freeman and Co., New York. Nam, S., Gutierrez, M., Diplas, P., et al., 2010. Comparison of Testing Techniques and Models for Establishing the SWCC of Riverbank Soils. Engineering Geology , 110(1-2): 1-10. https://doi.org/10.1016/j.enggeo.2009.09.003 Niu, H., Liang, X., Li, J., et al., 2016. Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui. Earth Science , 41(3): 499-507 (in Chinese with English abstract). Pachepsky, Y., Crawford, J. W., Rawls, W. J., 2000. Fractals in Soil Science. Elsevier, Amsterdam. Peng, H. T., Horton, R., Lei, T. W., et al., 2015. A Modified Method for Estimating Fine and Coarse Fractal Dimensions of Soil Particle Size Distributions Based on Laser Diffraction Analysis. Journal of Soils and Sediments , 15(4): 937-948. https://doi.org/10.1007/s11368-014-1044-8 Phoon, K. K., Santoso, A., Quek, S. T., 2010. Probabilistic Analysis of Soil-Water Characteristic Curves. Journal of Geotechnical and Geoenvironmental Engineering , 136(3): 445-455. https://doi.org/10.1061/(asce)gt.1943-5606.0000222 Rajesh, S., Roy, S., Madhav, S., 2017. Study of Measured and Fitted SWCC Accounting the Irregularity in the Measured Dataset. International Journal of Geotechnical Engineering , 11(4): 321-331. https://doi.org/10.1080/19386362.2016.1219541 Rieu, M., Sposito, G., 1991. Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory. Soil Science Society of America Journal , 55(5): 1231-1238. https://doi.org/10.2136/sssaj1991.03615995005500050006x Sillers, W. S., Fredlund, D. G., Zakerzaheh, N., 2001. Mathematical Attributes of Some Soil-Water Characteristic Curve Models. Geotechnical and Geological Engineering , 19: 243-283. doi: 10.1023/A:1013109728218 Tyler, S. W., Wheatcraft, S. W., 1990. Fractal Processes in Soil Water Retention. Water Resources Research , 26(5): 1047-1054. https://doi.org/10.1029/wr026i005p01047 Tyler, S. W., Wheatcraft, S. W., 1992. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations. Soil Science Society of America Journal , 56(2): 362-369. https://doi.org/10.2136/sssaj1992.03615995005600020005x Wang, Y. Y., He, Y. J., 2019. The Indicative Effect of Soil Fractal Structure on Its Hydraulic Properties. Earth Science Frontiers , 26(6): 66-74 (in Chinese with English abstract). Wei, Y., Wang, Y. Q., Han, J. C., et al., 2019. Analysis of Water Retention Characteristics of Oil-Polluted Earthy Materials with Different Textures Based on van Genuchten Model. Journal of Soils and Sediments , 19(1): 373-380. https://doi.org/10.1007/s11368-018-2026-z Xu, Y. F., Dong, P., 2004. Fractal Approach to Hydraulic Properties in Unsaturated Porous Media. Chaos, Solitons & Fractals , 19(2): 327-337. https://doi.org/10.1016/S0960-0779(03)00045-6 Yang, X. X., Wang, X. L., Wang, J. P., et al., 2019. Spatial Variation Analysis of Soil Moisture and Salinity in Tianjin Binhai New Area. Science of Soil and Water Conservation , 17(3): 39-47 (in Chinese with English abstract). Zhang, C., Liu, Y. J., Zhang, Z. L., et al., 2019. Deformation and Geochronological Characteristics of Gudonghe Ductile Shear Zone in Yanbian Area. Earth Science , 44(10): 3252-3264 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910007.htm 蔡建超, 胡祥云, 2015. 多孔介质分形理论与应用. 北京: 科学出版社. 程冬兵, 蔡崇法, 彭艳平, 等, 2009. 根据土壤粒径分形估计紫色土水分特征曲线. 土壤学报, 46(1): 30-36. doi: 10.3321/j.issn:0564-3929.2009.01.005 杜书恒, 师永民, 关平, 2019. 长石粒内孔流体充注规律及分形特征: 以鄂尔多斯盆地延长组致密砂岩储层为例. 地球科学, 44(12): 4252-4263. doi: 10.3799/dqkx.2018.199 郝翠, 梁耀元, 孟伟庆, 等, 2009. 天津滨海新区自然湿地植物分布与土壤理化性质的关系. 湿地科学, 7(3): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD200903011.htm 何雨江, 蔺文静, 王贵玲, 2013. 利用TDR100系统原位监测深厚包气带水热动态. 吉林大学学报(地球科学版), 43(6): 1972-1979. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306029.htm 黄冠华, 詹卫华, 2002. 土壤水分特性曲线的分形模拟. 水科学进展, 13(1): 55-60. doi: 10.3321/j.issn:1001-6791.2002.01.010 林丹, 靳孟贵, 马斌, 等, 2014. 包气带增厚区土壤水力参数及其对入渗补给的影响. 地球科学, 39(6): 760-768. doi: 10.3799/dqkx.2014.071 马传明, 2013. 包气带水文学实验指导. 武汉: 中国地质大学出版社. 牛宏, 梁杏, 李静, 等, 2016. 衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示. 地球科学, 41(3): 499-507. doi: 10.3799/dqkx.2016.041 王艳艳, 何雨江, 2019. 土壤分形结构对其水力性质的指示作用. 地学前缘, 26(6): 66-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906012.htm 杨晓潇, 王秀兰, 王计平, 等, 2019. 天津市滨海新区土壤水盐空间变异分析. 中国水土保持科学, 17(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201903006.htm 张超, 刘永江, 张照录, 等, 2019. 延边地区古洞河韧性剪切带变形特征及变形时代. 地球科学, 44(10): 3252-3264. doi: 10.3799/dqkx.2016.041

地址:湖北省武汉市洪山区鲁磨路388号《地球科学》编辑部 邮编:430074

电话:027-67885075 传真:027-67885075

北京仁和汇智信息技术有限公司 开发 技术支持: info@rhhz.net