Abstract:
Pseudogene is a DNA fragment with high sequence similarity to the corresponding functional gene. Because of accumulation of multiple mutations, pseudogenes have lost their original functions. Previous studies indicated that pseudogenes are dysfunctional relatives of the corresponding functional genes, and are noises in the process of genome evolution. However, with the development of molecular biotechnologies, more and more studies have demonstrated that pseudogenes possess important biologic functions. For example, some pseudogene could regulate the expression of functional genes by competitively binding to the miRNAs, some could produce endogenous small interference RNAs to negatively regulate the expression of functional genes, and some even could encode functional proteins. In this review, we summarize the recent research progresses of pseudogenes through four aspects: the classification, identification, function, and particularly the roles in cancers.
Key words:
pseudogene,
miRNA,
small interference RNA,
antisense RNA,
cancer
[1] Jacq C, Miller JR, Brownlee GG. A pseudogene structure in 5S DNA of Xenopus laevis . Cell , 1977, 12(1): 109-120.
[2] Proudfoot N. Pseudogenes. Nature , 1980, 286(5776): 840-841.
[3] Petrov DA, Hartl DL. Pseudogene evolution and natural selection for a compact genome. J Hered , 2000, 91(3): 221-227.
[4] Podlaha O, Zhang JZ. Pseudogenes and their evolution. Chichester: John Wiley & Sons, 2001.
[5] Zhou BS, Beidler DR, Cheng YC. Identification of antisense RNA transcripts from a human DNA topoisomeraseⅠ pseudogene 1. Cancer Res , 1992, 52(15): 4280-4285.
[6] Korneev SA, Park JH, O'shea M. Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci , 1999, 19(18): 7711-7720.
[7] Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature , 2008, 453(7194): 534-538.
[8] Poliseno L, Salmena L, Zhang JW, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature , 2010, 465(7301): 1033-1038.
[9] Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grandér D, Morris KV. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol , 2013, 20(4): 440-446.
[10] Mighell AJ, Smith NR, Robinson PA, Markham AF. Vertebrate pseudogenes. FEBS Lett , 2000, 468(2-3): 109-114.
[11] Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M. Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol , 2010, 11(3): R26.
[12] Maestre J, Tchenio T, Dhellin O, Heidmann T. mRNA retroposition in human cells: processed pseudogene formation. EMBO J , 1995, 14(24): 6333-6338.
[13] D'errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: origin and features. Brief Funct Genom Proteom , 2004, 3(2): 157-167.
[14] Vanin EF. Processed pseudogenes: Characteristics and evolution. Annu Rev Genet , 1985, 19(1): 253-272.
[15] Li WH, Gojobori T, Nei M. Pseudogenes as a paradigm of neutral evolution. Nature , 1981, 292(5820): 237-239.
[16] Wang W, Zhang JM, Alvarez C, Llopart A, Long MY. The origin of the Jingwei gene and the complex modular structure of its parental gene, Yellow emperor , in Drosophila melanogaster . Mol Biol Evol , 2000, 17(9): 1294-1301.
[17] Torrents D, Suyama M, Zdobnov E, Bork P. A genome-wide survey of human pseudogenes. Genome Res , 2003, 13(12): 2559-2567.
[18] Li W, Yang W, Wang XJ. Pseudogenes: pseudo or real functional elements? J Genet Genomics , 2013, 40(4): 171-177.
[19] Balakirev ES, Ayala FJ. PSEUDOGENES: Are they “Junk” or functional DNA? Annu Rev Genet , 2003, 37(1): 123-151.
[20] Betrán E, Wang W, Jin L, Long MY. Evolution of the Phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol Biol Evol , 2002, 19(5): 654-663.
[21] Zheng DY, Gerstein MB. A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol , 2006, 7(Suppl. 1): S13.
[22] Zheng DY, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu Y, Denoeud F, Antonarakis SE, Snyder M, Ruan YJ, Wei CL, Gingeras TR, Guigó R, Harrow J, Gerstein MB. Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. Genome Res , 2007, 17(6): 839-851.
[23] Molineris I, Sales G, Bianchi F, Di Cunto F, Caselle M. A new approach for the identification of processed pseudogenes. J Comput Biol , 2010, 17(5): 755-765.
[24] Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenk
孔维泽, 柳艺石, 高晓冬, 藤田盛久.
数据驱动的人体正常和癌症组织中糖基磷脂酰肌醇锚定蛋白(GPI-AP)相关基因表达谱的综合分析
[J]. 遗传, 2023, 45(8): 669-683.
漆思晗, 王棨临, 张俊有, 刘倩, 李春燕.
增强子调控癌症发生发展的机制研究
[J]. 遗传, 2022, 44(4): 275-288.
雷常贵, 贾学渊, 孙文靖.
基于癌症基因组图谱计划多组学数据构建胶质母细胞瘤六基因预后模型
[J]. 遗传, 2021, 43(7): 665-679.
梁文权,侯豫,赵存友.
精神分裂症相关单核苷酸多态性调控microRNA功能研究进展
[J]. 遗传, 2019, 41(8): 677-685.
宋亚坤,张敏,王翘楚,彭玉荔,贾方兴,余春红.
利用RNA干扰技术沉默基因表达在本科实验教学中的设计与实践
[J]. 遗传, 2019, 41(7): 653-661.
张競文,续倩,李国亮.
癌症发生发展中的表观遗传学研究
[J]. 遗传, 2019, 41(7): 567-581.
吴志强, 米泽云.
超级增强子在肿瘤研究中的进展
[J]. 遗传, 2019, 41(1): 41-51.
刘启鹏, 安妮, 岑山, 李晓宇.
piRNA抑制基因转座的分子机制
[J]. 遗传, 2018, 40(6): 445-450.
胡立桥,周兆才,田伟.
Hippo信号通路结构生物学研究进展
[J]. 遗传, 2017, 39(7): 659-674.
许崇凤,段子渊.
中华民族永生细胞库在生命科学研究中的支撑作用
[J]. 遗传, 2017, 39(1): 75-86.
王大勇, 马宁, 惠洋, 高旭.
CRISPR/Cas9基因组编辑技术在癌症研究中的应用
[J]. 遗传, 2016, 38(1): 1-8.
周学, 杜宜兰, 金萍, 马飞.
癌症相关microRNA与靶基因的生物信息学分析
[J]. 遗传, 2015, 37(9): 855-864.
李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉.
竞争性内源RNA的生物学功能及其调控
[J]. 遗传, 2015, 37(8): 756-764.
白玉, 陆雯芸, 韩凝, 边红武, 朱睦元.
miR126功能的多效性与先天性免疫
[J]. 遗传, 2014, 36(7): 631-636.
樊春燕, 魏强, 郝志强, 李广林.
miRNAs调控lincRNAs的生物信息学预测与功能分析
[J]. 遗传, 2014, 36(12): 1226-1234.