The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
上海交通大学医学院附属新华医院 上海市儿科医学研究所小儿内分泌遗传代谢科,上海 200092
通信作者:韩连书,主任医师,硕士生导师,主要从事儿童内分泌遗传代谢病研究;E-mail:
nc.moc.demauhnix@uhsnailnah
;https://orcid.org/0000-0003-4209-5119
。但这些技术均属于生化指标检测, 存在较多的不足:①筛查结果受胎龄、出生体重、营养、用药、地域/种族差异等多种因素的影响, 易出现假阳性结果,从而导致产妇及家属的焦虑
;②部分疾病筛查假阴性率高, 如citrin蛋白缺乏所致新生儿肝内胆汁淤积症、多酰基辅酶A脱氢酶缺乏症、鸟氨酸氨甲酰转移酶缺乏症等,其在新生儿期或未发病时代谢物通常无异常, 导致漏诊
;③代谢物检测不能确定遗传病基因型;④筛查病种不够多, 未涵盖一些发病率较高的疾病, 如成骨不全、黏多糖贮积症、肝豆状核变性等。近几年, 国内外多家科研机构将基因检测技术用于新生儿遗传病筛查研究
, 从基因层面通过一次实验可以检测数十种至数千种疾病, 有助于新生儿遗传病筛查的广泛开展。目前,用于新生儿疾病筛查的基因检测技术较多, 筛查的疾病也从单种到数百种, 如何选择基因检测技术及病种值得探讨。
1新生儿遗传病筛查基因检测技术
近年来,基因检测技术快速发展,越来越广泛地应用于新生儿遗传病筛查领域。基于基因测序衍生出的不同筛查方案,各有其检测适应证、优势及局限性。在选择标准上,Wright等
指出当一个疾病表型确定时,只需选择相对明确的基因进行检测,而对于遗传异质性表型疾病则须选择相对全面的方案。此外,还须结合检测阳性率、费用和时效等因素,合理选择适宜的基因检测技术。
1.1定量PCR技术
定量PCR技术是指在PCR扩增反应体系中加入荧光基团,对扩增反应中每一循环产物的荧光信号进行实时检测,并通过标准曲线对未知模板进行定量分析的方法。因其具有敏感度高、操作简便、检查费用低等优势,适合对致病基因或致病位点明确的单基因遗传病进行大规模检测。其缺点是可涵盖的基因数量受限,检测病种相对较少,只能检测已知致病突变位点,不能检测新发突变。目前,此项技术多用于耳聋和脊髓性肌萎缩的筛查
另外,高分辨率熔解曲线分析是一种高效、稳定的PCR技术,其不受突变碱基位点及其类型的局限,且不需要序列特异性探针,在PCR结束后即可直接进行突变检测和基因型分析,具有快速、简便、灵敏、闭管操作、低成本等优点,目前已用于多种致病基因已知突变位点的遗传代谢病筛查,如甲基丙二酸血症合并同型半胱氨酸血症、肝豆状核变性及法布里病等
。但高分辨率熔解曲线分析对于PCR要求高,且在多态性或富含GC等复杂基因片段检测中的应用尚存在争议
1.2高通量测序
高通量测序是一种大规模平行测序技术。根据测序覆盖范围不同,可分为基因包测序(Panel测序)、全外显子组测序和全基因组测序。
1.2.1基因包测序
基因包测序可对某些疾病的相关基因进行目标基因测序,可同时检测数种至数百种基因。基因包测序检测基因数量少,检测成本相对低,且具有针对性强、覆盖范围广、周转时间短等优势,但其无法发现一些未知基因和特殊突变。基因包测序适用的遗传病特点为:①具有明显临床表型多样性;②多个疾病中存在表型重叠现象,需要进行鉴别诊断;③遗传位点的异质性,多个基因同时控制一个代谢通路
。由于其可以自由搭配基因种类及数量,临床多用于某一类或几类遗传病基因检测。目前,多种新生儿遗传病筛查多采用此方法
1.2.2全外显子组测序
全外显子组测序由于检测疾病范围广、检测性价比高等优势,现用于识别临床未确诊疾病患者的基因检测。其局限性在于不能获得完整的基因组信息、无法检测DNA结构突变、难以有效覆盖高度同源区、易出现假阳性和假阴性结果,而且检测成本高、检测周期长、生物信息学分析具有一定难度,故目前不适用于新生儿疾病筛查
1.2.3全基因组测序
即对生物体整个基因组序列进行测序,是检测基因突变的终极手段。全基因组测序可以获得个体全部差异和变异信息,较全外显子组测序覆盖的区域更广,且在鉴定单碱基突变、插入缺失突变、拷贝数突变和结构突变中更具优势
。目前,第二代STATseq项目可以在26 h内进行初步诊断,且敏感度和特异度均超过99.5%
。但全基因组测序面临致病突变体的鉴定、临床意义不明突变结果的解释、短时间内进行大量数据储存和分析、相对高成本等诸多挑战,其在临床的适用性仍须进一步评估。目前,全基因组测序多用于临床疑似遗传病及现有检测技术未能明确病因的患者,不适用于新生儿遗传病筛查
2新生儿遗传病基因筛查的临床应用
2.1新生儿遗传病基因筛查的疾病选择及基因选择
新生儿遗传病筛查病种的选择主要参考1968年世界卫生组织Wilson-Jungner标准,即危及生命或可能导致严重残疾,易于筛查且具有有效治疗或干预方案的疾病。在此基础上,新生儿遗传病基因筛查的疾病应选择:①目前开展筛查的疾病;②当地患病率及发病率较高且危害重的疾病;③遗传机制清晰及基因型与表型明确的疾病;④有第二种方法可辅助诊断的疾病;⑤可以治疗的疾病
新生儿遗传病基因筛查选择的基因包括某一种疾病的全部致病基因或优势基因。美国新生儿基因组测序(BabySeq)项目中包含三类基因
:①对儿童期发病的疾病具有很高预测价值的基因;②具有中度证据和(或)外显率的基因,儿童期无创干预可防止严重后果或成人期发病但儿童期的无创干预可能显著改善临床症状;③缺乏导致疾病证据的基因,具有低、中度外显率或与成人期发病条件有关,尚无证据表明儿童期非侵入性治疗起作用,但与患者的症状相关。对于可由多个基因突变导致的疾病,如高苯丙氨酸血症、甲基丙二酸血症及枫糖尿病等,可由数个至十几个基因突变引起,为了节约实验室成本、生物信息学分析成本及检测时间成本,需要选择占比较高的基因,如苯丙氨酸血症可选择
PAH
和
PTS
基因,甲基丙二酸血症可选择
MMACHC
、
MMUT
、
MMAA
和
MMAB
基因。
2.2新生儿遗传病单病种基因筛查
2.2.1耳聋基因筛查
耳聋患者中70%及以上是由遗传因素引起的,新生儿听力筛查虽然可以快速检查听力,但不适于迟发性、进行性或药物性耳聋筛查
。耳聋基因筛查有助于提高遗传性耳聋的检出率。目前采用的筛查方法为针对数个基因及突变位点的定量PCR技术,已取得了显著效果
2.2.2脊髓性肌萎缩基因筛查
脊髓性肌萎缩是一种常染色体隐性神经退行性疾病,是由于
SMN1
基因纯合缺失导致SMN蛋白缺乏而致。2017年,美国一项研究利用定量PCR技术对纽约3826名新生儿进行筛查,检测出1例脊髓性肌萎缩患儿,证实了脊髓性肌萎缩基因筛查的可行性
。2019年,我国大陆地区首次对脊髓性肌萎缩进行大规模筛查,采用DNA质谱技术对29 364名新生儿进行筛查,确诊3例患儿。该方法具有时间短、成本低、特异度及敏感度高等优势,有助于推动脊髓性肌萎缩的新生儿筛查
2.2.3地中海贫血基因筛查
地中海贫血是由于人类珠蛋白基因突变或缺失导致珠蛋白肽链异常引起的一组遗传性溶血性疾病,以α-地中海贫血和β-地中海贫血最为常见。2016年,我国贵州省率先使用高通量测序联合传统地中海贫血筛查技术——跨越断裂点PCR,对18 309名新生儿进行地中海贫血基因筛查,结果显示该地区地中海贫血基因携带率为12.9%(2362/18 309),且检测出传统方法无法检测出的65例地中海贫血基因携带者和相关突变,提示高通量测序结合跨越断裂点PCR可以有效地识别新的突变,降低误诊率
2.2.4重症联合免疫缺陷病基因筛查
重症联合免疫缺陷病为X-连锁或常染色体隐性遗传,是原发免疫缺陷病最严重的类型。定量PCR技术用于测定干血斑提取DNA中T细胞受体切除环的含量,其敏感度和特异度高,是目前新生儿重症联合免疫缺陷病筛查的主要方法。自2008年美国率先利用T细胞受体切除环筛查重症联合免疫缺陷病起,许多国家如英国、法国、西班牙等都纷纷进行了重症联合免疫缺陷病筛查研究
。2010年,我国台湾地区率先进行了重症联合免疫缺陷病试点筛查项目,在106 931名受检新生儿中筛查出2例患儿
2.3新生儿遗传病多病种基因筛查
单病种基因筛查一次实验仅能筛查一种疾病,筛查效率低。遗传病种类繁多,多病种基因筛查有助于节约成本,提高筛查效率,实现一次检测筛查数十种至数百种疾病的目的。高通量测序因其测序速度快、检测疾病谱广、不依赖于典型的临床表现,越来越广泛地应用于新生儿遗传代谢性疾病筛查
。但目前利用高通量测序进行大样本新生儿遗传病筛查的报道较少,多为串联质谱法检测后的二级筛查
。英国Campen等
设计了一个包含
PAH
、
ACADM
、
TSHR
、
CFTR
、
HBB
的基因包,筛查苯丙酮尿症、中链酰基辅酶A脱氢酶缺乏症、先天性甲状腺功能低下症、囊性纤维化和镰刀型细胞贫血等五种疾病,结果显示敏感度100%,特异度99.96%,准确度99.5%,证实了基因包测序用于新生儿筛查的有效性,且其报告时间仅1周,每样本检测成本约62.41英镑,但其筛查疾病偏少。国内Luo等
设计包含573种基因的基因包,利用高通量测序在1127名受检新生儿中筛查出4例葡萄糖-6-磷酸脱氢酶患儿,1例原发性肉碱缺乏症患儿(此患儿串联质谱法检测阴性),同时获得中国常见基因的携带率数据。基因包测序联合串联质谱法可弥补目前新生儿遗传代谢病筛查的缺陷,有效地降低假阳性率和假阴性率,使结果更加可靠
。2020年,我国广东地区开展了串联质谱法联合高通量测序筛查遗传代谢性疾病的研究
,共筛查20 000名新生儿,结果证实串联质谱法联合高通量测序可有效降低串联质谱法筛查的假阳性率和假阴性率,并及早明确患者致病基因突变位点,为后续的临床治疗和遗传咨询提供依据。
3新生儿遗传病基因筛查结果解读
根据ACMG联合分子病理协会在2015年提出的“序列变异解读标准和指南”
,突变位点评级可分为致病性、可能致病性、临床意义不明、可能良性和良性5个等级。其中,致病性和可能致病性突变对临床有诊断意义;临床意义不明不能直接作为临床诊断的依据,需要结合临床,必要时进行相应的家系成员验证、辅助检查、临床随访等;可能良性和良性为不致病
。对于报告结果的解读,ACMG建议用“阳性”、“阴性”、“不确定”以及“携带者”作总结性说明。“阳性”即检出的致病突变可解释受检者的临床指征;“阴性”即没有检出任何可疑的突变;“不确定”即检出的突变为临床意义不明或常染色体隐性遗传的疾病只检出一个杂合致病突变而不足以解释受检原因;“携带者”则仅适用于隐性遗传病携带者筛查的报告
由于新生儿基因筛查是在新生儿出生后2~7 d采血进行基因检测,即使是遗传病患儿采血时大部分可能并无临床表现,判断检测到的基因突变是否致病时无临床表型作为依据。故除按照上述基因检测结果解读原则对基因检测结果进行判断外,尚需结合目前的常规筛查结果及特异代谢物检测进行解读:①对于目前常规筛查的疾病,需要结合筛查结果进行解读,包括高苯丙氨酸血症、先天性甲状腺功能减退症、葡萄糖-6-磷酸脱氢酶缺乏症、串联质谱筛查疾病及耳聋等;②对于目前未进行常规筛查但有明确特异代谢物的疾病,如溶酶体疾病、进行性肌营养不良、糖原贮积症等,基因检测结果解读时建议进行特异代谢物检测,以便诊断或排除筛查疾病;③对于无特异代谢物的遗传病,基因检测结果按照上述基因检测结果解读原则解读。
4新生儿遗传病基因筛查相关伦理问题
新生儿遗传病基因筛查相关伦理问题主要有以下四方面:①政策制订的伦理学问题。新生儿疾病筛查政策制订应基于卫生经济学评价及成本效益分析结果,尊重人权。基因组技术的引入可为更多新生儿提供早期干预的机会以预防严重疾病、障碍或死亡。但必须确保以不损害当前筛查计划的有效性或社会支持的方式使用基因筛查技术。②新生儿监护人的知情选择权。新生儿疾病筛查应遵循自愿和知情选择的原则,其知情选择和决定权由其监护人代为行使。在进行新生儿筛查前应将检查的项目、意义、方法、费用等如实告知监护人,给予详尽解释,并取得书面同意。③保护隐私权。基因筛查结果信息涉及多方面的关联,因此在测序数据的存储、解读和使用过程中必须注意保护患儿及家庭信息和隐私。此外,在筛查阳性的患儿过程中,涉及具有血缘关系的相关亲属的隐私,须对亲属信息严格保密
。④筛查过程中的伦理学问题。对于筛查结果阳性的患儿家属出现焦虑、绝望等情绪时须做好安抚和沟通解释工作;检查结果可能出现携带者、假阳性、假阴性、不确定性结果等情况,因此如何提请患儿家属重视的同时不增加其心理负担,对医生的遗传咨询能力和报告解读能力提出了较高的要求
5结语
几十年来,检测干血斑特异代谢物的生化筛查技术在新生儿遗传病筛查中发挥了重要作用。随着基因检测技术的进步,基因筛查有助于扩大新生儿遗传病筛查病种,部分遗传代谢病生化指标检测联合基因检测技术将提高新生儿遗传代谢病的筛查效率。随着新生儿遗传病基因筛查的相关研究逐步开展,在新生儿遗传病基因筛查的疾病种类、基因选择、基因筛查流程、筛查结果判读、筛查阳性者随访、诊断、治疗等方面将陆续形成专家共识,遗传代谢病患儿有望得到更早的诊断及治疗。
Funding Statement
国家重点研发计划(2016YFC0901505)
COMPETING INTERESTS
所有作者均声明不存在利益冲突
References
1.
ALMANNAI M, MAROM R, SUTTON V R. Newborn screening: a review of history, recent advancements, and future perspectives in the era of next generation sequencing[J]
Curr Opin Pediatr
.
.
2016;
28
(6):694–699. doi: 10.1097/mop.0000000000000414.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
RYCKMAN K K, BERBERICH S L, SHCHELOCHKOV O A, et al. Clinical and environmental influences on metabolic biomarkers collected for newborn screening[J]
Clin Biochem
.
.
2013;
46
(1-2):133–138. doi: 10.1016/j.clinbiochem.2012.09.013.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
LIN Y, LIU Y, ZHU L, et al. Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency[J]
J Inher Metab Dis
.
.
2020;
43
(3):467–477. doi: 10.1002/jimd.12206.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
张伟然, 赵正言. 新生儿疾病基因筛查研究进展[J].
中华儿科杂志
, 2020, 58(12): 1033-1037
[
PubMed
]
ZHANG Weiran, ZHAO Zhengyan. Advances in genetic screening for neonatal diseases[J].
Chinese Journal of Pediatrics
, 2020, 58(12): 1033-1037. (in Chinese)
[
PubMed
]
7.
WRIGHT C F, FITZPATRICK D R, FIRTH H V. Paediatric genomics: diagnosing rare disease in children[J]
Nat Rev Genet
.
.
2018;
19
(5):253–268. doi: 10.1038/nrg.2017.116.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
LEE S Y, OH D Y, HAN J H, et al. Flexible real-time polymerase chain reaction-based platforms for detecting deafness mutations in koreans: a proposed guideline for the etiologic diagnosis of auditory neuropathy spectrum disorder[J]
Diagnostics
.
.
2020;
10
(9):672. doi: 10.3390/diagnostics10090672.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
KRASZEWSKI J N, KAY D M, STEVENS C F, et al. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state[J]
Genet Med
.
.
2018;
20
(6):608–613. doi: 10.1038/gim.2017.152.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
XU A, LV T, ZHANG B, et al. Development and evaluation of an unlabeled probe high-resolution melting assay for detection of
ATP7B
mutations in Wilson’s disease[J/OL]
J Clin Lab Anal
.
.
2017;
31
(4):e22064. doi: 10.1002/jcla.22064.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
PASQUALIM G, DOS SANTOS B A, GIUGLIANI R, et al. Simple and efficient screening of patients with Fabry disease with high resolution melting[J]
Clin Biochem
.
.
2018;
53
:160–163. doi: 10.1016/j.clinbiochem.2018.01.002.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
应斌武. 高分辨熔解曲线分析在遗传病分子诊断中的应用[J].
中华检验医学杂志
, 2017, 40(2): 146-148
YING Binwu. Application of high resolution fusion curve analysis in molecular diagnosis of genetic diseases[J].
Chinese Journal of Laboratory Medicine
, 2017, 40(2): 146-148. (in Chinese)
14.
XUE Y, ANKALA A, WILCOX W R, et al. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing[J]
Genet Med
.
.
2015;
17
(6):444–451. doi: 10.1038/gim.2014.122.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
中国医师协会医学遗传医师分会, 中华医学会儿科学分会内分泌遗传代谢学组, 中国医师协会青春期医学专业委员会临床遗传学组, 等. 全基因组测序在遗传病检测中的临床应用专家共识[J].
中华儿科杂志
, 2019, 57(6): 419-423
[
PubMed
]
Society of Medical Geneticists, Chinese Medical Doctor Association; Subspecialty Group of Endocrindogic, Hereditary and Metabolic Diseases, the Society of Pedratrics, Chinese Medical Association; Clinical Genetics Group, Adolescent Medicine Committee, Chinese Medical Doctor Association, et al. Consensus on the application of clinical whole genome sequencing in the diagnosis of genetic diseases[J].
Chinese Journal of Pediatrics
, 2019, 57(6): 419-423. (in Chinese)
[
PubMed
]
20.
MILLER N A, FARROW E G, GIBSON M, et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases[J]
Genome Med
.
.
2015;
7
(1):100. doi: 10.1186/s13073-015-0221-8.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
HOWARD H C, KNOPPERS B M, CORNEL M C, et al. Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes[J]
Eur J Hum Genet
.
.
2015;
23
(12):1593–1600. doi: 10.1038/ejhg.2014.289.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
PHORNPHUTKUL C, PADBURY J. Large scale next generation sequencing and newborn screening: are we ready?[J]
J Pediatr
.
.
2019;
209
:9–10. doi: 10.1016/j.jpeds.2019.01.037.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
CEYHAN-BIRSOY O, MURRY J B, MACHINI K, et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the babyseq project[J]
Am J Hum Genet
.
.
2019;
104
(1):76–93. doi: 10.1016/j.ajhg.2018.11.016.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
WANG Q, XIANG J, SUN J, et al. Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China[J]
Genet Med
.
.
2019;
21
(10):2231–2238. doi: 10.1038/s41436-019-0481-6.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
ZOU Y, DAI Q Q, TAO W J, et al. Suspension array-based deafness genetic screening in 53,033 Chinese newborns identifies high prevalence of 109 G>A in GJB2[J]
Int J Pediatr Otorhinolaryngol
.
.
2019;
126
:109630. doi: 10.1016/j.ijporl.2019.109630.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
TAN M, BAI Y, ZHANG X, et al. Early genetic screening uncovered a high prevalence of thalassemia among 18 309 neonates in Guizhou, China[J]
Clin Genet
.
.
2021;
99
(5):704–712. doi: 10.1111/cge.13923.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
孙碧君, 孙金峤. 新生儿重症联合免疫缺陷病筛查研究进展[J].
中华儿科杂志
, 2017, 55(1): 70-73
SUN Bijun, SUN Jinqiao. Development of newborn screening for severe combined immunodeficiency[J].
Chinese Journal of Pediatrics
, 2017, 55(1): 70-73. (in Chinese)
[
PubMed
]
30.
CHIEN Y H, CHIANG S C, CHANG K L, et al. Incidence of severe combined immunodeficiency through newborn screening in a Chinese population[J]
J Formo Med Assoc
.
.
2015;
114
(1):12–16. doi: 10.1016/j.jfma.2012.10.020.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
FLEIGE T, BURGGRAF S, CZIBERE L, et al. Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis[J]
Eur J Hum Genet
.
.
2020;
28
(2):193–201. doi: 10.1038/s41431-019-0521-3.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
IBARRA-GONZÁLEZ I, FERNÁNDEZ-LAINEZ C, GUILLÉN-LÓPEZ S, et al. Molecular analysis using targeted next generation DNA sequencing and clinical spectrum of Mexican patients with isovaleric acidemia[J]
Clinica Chim Acta
.
.
2020;
501
:216–221. doi: 10.1016/j.cca.2019.10.041.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
ADHIKARI A N, GALLAGHER R C, WANG Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism[J]
Nat Med
.
.
2020;
26
(9):1392–1397. doi: 10.1038/s41591-020-0966-5.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
LUO X, SUN Y, XU F, et al. A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns[J]
Ann Transl Med
.
.
2020;
8
(17):1058. doi: 10.21037/atm-20-1147.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
SMON A, REPIC LAMPRET B, GROSELJ U, et al. Next generation sequencing as a follow-up test in an expanded newborn screening programme[J]
Clin Biochem
.
.
2018;
52
:48–55. doi: 10.1016/j.clinbiochem.2017.10.016.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
36.
敖桢桢, 王 静, 李思涛, 等. 串联质谱联合二代测序在2万例新生儿遗传病筛查分析中的应用[J].
中华实用儿科临床杂志
, 2020, 35(24): 1881-1885
AO Zhenzhen, WANG Jing, LI Sitao, et al. Application of tandem mass spectrometry combined with second-generation sequencing in screening and analysis of 20,000 neonatal genetic diseases[J].
Chinese Clinical Journal of Practical Pediatrics
, 2020, 35(24): 1881-1885. (in Chinese)
37.
RICHARDS S, AZIZ N, BALE S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]
Genet Med
.
.
2015;
17
(5):405–423. doi: 10.1038/gim.2015.30.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
中华儿科杂志编辑委员会. 儿童遗传病遗传检测临床应用专家共识[J].
中华儿科杂志
, 2019, 57(3): 172-176
[
PubMed
]
The Editorial Board, Chinese Journal of Pediatrics. Consensus recommendations for the clinical application of genetic testing for children’s genetic diseases[J].
Chinese Journal of Pediatrics
, 2019, 57(3): 172-176. (in Chinese)
[
PubMed
]
39.
KALIA S S, ADELMAN K, BALE S J, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics[J]
Genet Med
.
.
2017;
19
(2):249–255. doi: 10.1038/gim.2016.190.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
BOTKIN J R, BELMONT J W, BERG J S, et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents[J]
Am J Hum Genet
.
.
2015;
97
(1):6–21. doi: 10.1016/j.ajhg.2015.05.022.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
LANTOS J D. Ethical and psychosocial issues in whole genome sequencing (WGS) for newborns[J]
Pediatrics
.
.
2019;
143
(Suppl 1):S1–S5. doi: 10.1542/peds.2018-1099B.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Articles from
Journal of Zhejiang University (Medical Sciences)
are provided here courtesy of
Zhejiang University Press