• 1 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241
    2 Zhejiang Academy of Forestry, Zhoushan, Zhejiang 316000
    3 Hangzhou Zhisen Forestry Survey Planning and Design Company Limited, Hangzhou 310000
    4 Shanghai Botanical Garden, Shanghai 200231
    5 Ningbo Forestry Technology Service Center, Ningbo, Zhejiang 315040
  • 摘要:

    岛屿因具有明确的地理边界, 是检验多个生态学过程如何构建生物多样性的理想平台之一。岛屿属性、气候因素、人类干扰等通过影响物种选择、扩散等过程, 进而影响着岛屿生物多样性格局。目前对于岛屿植物丰富度格局如何受这些因素的共同作用的认识仍不充分, 尤其是在人类干扰较强的海岛。本文基于我国第一大群岛舟山群岛92个岛屿较完整的种子植物分布数据, 采用一般线性回归和广义线性模型(伪泊松分布)定量评估岛屿属性(面积、隔离度、形状指数)、气候(温度、降水及其季节性)和人类干扰对本土植物总丰富度及不同生长型、叶物候型植物丰富度格局的影响, 采用beta回归分析常绿阔叶木本比率(常绿阔叶木本植物丰富度/所有阔叶木本植物丰富度)的影响因素。结果发现: 92个岛屿共记录本土植物1,158种, 其中乔木108种、灌木318种、草本732种; 岛屿面积是对植物总丰富度影响最大的因子, 其次是年降水量和隔离度; 乔木丰富度随隔离度增加而减少的趋势比灌木和草本更明显; 常绿阔叶和落叶阔叶木本植物丰富度格局与总体基本一致, 年降水量对常绿阔叶木本的影响大于落叶阔叶木本, 但常绿阔叶木本比率仅受温度季节性的强烈影响。岛屿面积、年降水量、温度季节性等是塑造舟山群岛所有植物及其不同功能型组(生长型、叶物候型)植物丰富度格局的主要决定因素。

    功能生物地理学

    Abstract

    Aims: Islands are an ideal platform for investigating ecological processes that shape biodiversity assemblages because of their distinct boundaries. An island’s physical characteristics, climate, human impacts and other drivers shape an island’s biodiversity pattern by affecting species selection, dispersal and other processes. However, our knowledge around how such drivers concurrently affect island plant richness remains limited, especially on oceanic islands with strong human impacts.

    Methods: We complied a comprehensive plant distribution database across 92 islands in the Zhoushan Archipelago, the largest archipelago in China. We then used general linear regression and generalized linear model (pseudo-Poisson distribution) to evaluate the effects of island’s physical characteristics (area, isolation and shape index), climate (temperature, precipitation and seasonality) and human impacts on the richness of native seed plants, and across different growth forms and leaf phenology types. We also used beta regression to evaluate the influence of environmental variables on the ratio of evergreen broad-leaved woody plant richness to all broad-leaved woody plant richness.

    Results: In total, there were 1,158 seed plant species, including 108 tree species, 318 shrub species and 732 herbaceous species. The strongest driver of plant richness was island area, followed by isolation and annual precipitation. Tree richness decreased with increasing isolation, and this trend was most notable among trees than among shrubs and herbs. The richness of evergreen and deciduous broad-leaved woody plants was overall consistent with that of all plant richness. We found that annual precipitation had a stronger effect on evergreen broad-leaved woody than on deciduous, but the ratio of evergreen woody was only strongly affected by temperature seasonality.

    Conclusion: We found that island area, annual precipitation, and temperature seasonality are the primary determinants in shaping the richness patterns of all plants and different functional groups (growth forms and leaf phenology types) across the 92 islands of China’s Zhoushan Archipelago.

    Key words: island biogeography, macroecology, subtropical forest, human disturbance, functional biogeography

    商晓凡, 张健, 高浩杰, 库伟鹏, 毕玉科, 李修鹏, 阎恩荣 (2023) 岛屿面积与气候共同影响舟山群岛种子植物丰富度格局. 生物多样性, 31, 23392. DOI: 10.17520/biods.2023392 .

    Shang Xiaofan, Zhang Jian, Gao Haojie, Ku Weipeng, Bi Yuke, Li Xiupeng, Yan Enrong (2023) Island area and climate jointly impact seed plant richness patterns across the Zhoushan Archipelago. Biodiversity Science, 31, 23392. DOI: 10.17520/biods.2023392 .

    图3 植物丰富度与环境因子的相关性。(a)面积(Area); (b)距大陆距离(DM); (c)岛屿形状指数(SI); (d)人类影响指数(HI); (e)年均温(MAT); (f)年降水量(MAP); (g)温度季节性(TS); (h)降水季节性(PS)。 Fig. 3 Correlations between all seed plant richness and environmental drivers. (a) Area; (b) The distance to mainland (DM); (c) Shape index (SI); (d) Human influence index (HI); (e) Mean annual air temperature (MAT); (f) Mean annual precipitation (MAP); (g) Temperature seasonality (TS); and (h) Precipitation seasonality (PS).

    图3 植物丰富度与环境因子的相关性。(a)面积(Area); (b)距大陆距离(DM); (c)岛屿形状指数(SI); (d)人类影响指数(HI); (e)年均温(MAT); (f)年降水量(MAP); (g)温度季节性(TS); (h)降水季节性(PS)。

    Fig. 3 Correlations between all seed plant richness and environmental drivers. (a) Area; (b) The distance to mainland (DM); (c) Shape index (SI); (d) Human influence index (HI); (e) Mean annual air temperature (MAT); (f) Mean annual precipitation (MAP); (g) Temperature seasonality (TS); and (h) Precipitation seasonality (PS).

    图4 岛屿属性、气候与人类影响对本土植物丰富度的影响。(a)所有种子植物; (b)乔木; (c)灌木; (d)草本。直线代表95%置信区间; 虚线左侧为负相关, 右侧为正相关; 三角形代表标准化参数的估计值显著, 点则不显著。岛屿属性、气候、人类影响、变量间的交互变量分别用绿色、蓝色、紫色和红色表示。变量缩写同图3。纵轴上交互项之间用冒号表示。 Fig. 4 Effects of island physical characteristics, climate and human influence on native seed plant richness. (a) All seed plants; (b) Trees; (c) Shrubs; and (d) Herbs. The straight line represents the 95% confidence interval. The left side of the vertical dashed line indicates for negative correlations, while the right for positive correlations. The triangles indicate statistically significant estimates of standardized coefficients, and the dot points show the non-significant ones. Island characteristics, climate, human influence and their interactions are represented in green, blue, purple and red, respectively. Variable abbreviations are the same in Fig. 3. Interaction variables are separated by colons.

    图4 岛屿属性、气候与人类影响对本土植物丰富度的影响。(a)所有种子植物; (b)乔木; (c)灌木; (d)草本。直线代表95%置信区间; 虚线左侧为负相关, 右侧为正相关; 三角形代表标准化参数的估计值显著, 点则不显著。岛屿属性、气候、人类影响、变量间的交互变量分别用绿色、蓝色、紫色和红色表示。变量缩写同图3。纵轴上交互项之间用冒号表示。

    Fig. 4 Effects of island physical characteristics, climate and human influence on native seed plant richness. (a) All seed plants; (b) Trees; (c) Shrubs; and (d) Herbs. The straight line represents the 95% confidence interval. The left side of the vertical dashed line indicates for negative correlations, while the right for positive correlations. The triangles indicate statistically significant estimates of standardized coefficients, and the dot points show the non-significant ones. Island characteristics, climate, human influence and their interactions are represented in green, blue, purple and red, respectively. Variable abbreviations are the same in Fig. 3. Interaction variables are separated by colons.

    图5 岛屿属性、气候与人类影响对木本植物丰富度的影响。(a)常绿阔叶木本; (b)落叶阔叶木本; (c)常绿阔叶木本占总阔叶木本植物的比率。直线代表95%置信区间; 虚线左侧为负相关, 右侧为正相关; 三角形代表标准化参数的估计值显著, 点则不显著。岛屿属性、气候、人类影响、变量间的交互变量分别用绿色、蓝色、紫色和红色表示。变量缩写同图3。纵轴上交互项之间用冒号表示。 Fig. 5 Effects of island physical characteristics, climate and human influence on woody plant richness. (a) Evergreen broad-leaved woody plants; (b) Deciduous broad-leaved woody plants; and (c) The ratio of evergreen broad-leaved woody plant richness to all broad-leaved woody plant richness. The straight line represents the 95% confidence interval. The left side of the vertical dashed line indicates negative correlations, while the right for positive correlations. The triangles indicate statistically significant estimates of standardized coefficients, and the dot points show the non-significant ones. Island characteristics, climate, human influence and their interactions are represented in green, blue, purple and red, respectively. Variable abbreviations are the same in Fig. 3. Interaction variables are separated by colons.

    图5 岛屿属性、气候与人类影响对木本植物丰富度的影响。(a)常绿阔叶木本; (b)落叶阔叶木本; (c)常绿阔叶木本占总阔叶木本植物的比率。直线代表95%置信区间; 虚线左侧为负相关, 右侧为正相关; 三角形代表标准化参数的估计值显著, 点则不显著。岛屿属性、气候、人类影响、变量间的交互变量分别用绿色、蓝色、紫色和红色表示。变量缩写同图3。纵轴上交互项之间用冒号表示。

    Fig. 5 Effects of island physical characteristics, climate and human influence on woody plant richness. (a) Evergreen broad-leaved woody plants; (b) Deciduous broad-leaved woody plants; and (c) The ratio of evergreen broad-leaved woody plant richness to all broad-leaved woody plant richness. The straight line represents the 95% confidence interval. The left side of the vertical dashed line indicates negative correlations, while the right for positive correlations. The triangles indicate statistically significant estimates of standardized coefficients, and the dot points show the non-significant ones. Island characteristics, climate, human influence and their interactions are represented in green, blue, purple and red, respectively. Variable abbreviations are the same in Fig. 3. Interaction variables are separated by colons.

    Blackburn TM, Delean S, Pyšek P, Cassey P ( 2016 ) On the island biogeography of aliens: A global analysis of the richness of plant and bird species on oceanic islands. Global Ecology and Biogeography , 25 , 859-868. Cabral JS, Weigelt P, Kissling WD, Kreft H ( 2014 ) Biogeographic, climatic and spatial drivers differentially affect α-, β- and γ-diversities on oceanic archipelagos . Proceedings of the Royal Society B: Biological Sciences, 281 , 20133246. Carvajal-Endara S, Hendry AP, Emery NC, Davies TJ ( 2017 ) Habitat filtering not dispersal limitation shapes oceanic island floras: Species assembly of the Galápagos archipelago. Ecology Letters , 20 , 495-504. Chen CW, Xu AC, Wang YP ( 2020 ) Area threshold and trait-environment associations of butterfly assemblages in the Zhoushan Archipelago, China. Journal of Biogeography , 48 , 785-797. Cribari-Neto F, Zeileis A ( 2010 ) Beta regression in R. Journal of Statistical Software , 34 , 1-24. Delectis Florae Reipublicae Popularis Sinicae Agendae Academicae Sinicae Edita (1959-2004) Flora Reipublicae Popularis Sinicae (Tomus 1-80) Science Press, Beijing. (in Chinese) Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF ( 2012 ) Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals of Botany , 110 , 189-199. Gao HJ ( 2018 ) Three newly recorded plants in Zhoushan Islands, Zhejiang. Guihaia , 38 , 1286-1289. (in Chinese with English abstract) Ge JL, Xie ZQ ( 2017 ) Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: Implications for the definition of the mixed forest. Ecology and Evolution , 7 , 3636-3644. Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK ( 2012 ) Long-distance dispersal: A framework for hypothesis testing. Trends in Ecology & Evolution , 27 , 47-56. Givnish T ( 2002 ) Adaptive significance of evergreen vs . deciduous leaves: Solving the triple paradox. Silva Fennica , 36 , 703-743. Gleditsch JM, Behm JE, Ellers J, Jesse WAM, Helmus MR ( 2023 ) Contemporizing island biogeography theory with anthropogenic drivers of species richness. Global Ecology and Biogeography , 32 , 233-249. Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra JP ( 2010 ) Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science , 21 , 300-317. Helmus MR, Mahler DL, Losos JB ( 2014 ) Island biogeography of the Anthropocene. Nature , 513 , 543-546. Honnay O, Piessens K, Van Landuyt W, Hermy M, Gulinck H ( 2003 ) Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape and Urban Planning , 63 , 241-250. Hortal J, Triantis KA, Meiri S, Thébault E, Sfenthourakis S ( 2009 ) Island species richness increases with habitat diversity. The American Naturalist , 174, E205-E217. Jesse WA, Behm JE, Helmus MR, Ellers J ( 2018 ) Human land use promotes the abundance and diversity of exotic species on Caribbean Islands. Global Change Biology , 24 , 4784-4796. Jin XF, Lu YF, Ding BY, Li GY, Chen ZH, Zhang FG ( 2022 ) Species cataloging of the seed plants in Zhejiang, East China. Biodiversity Science , 30 , 21408. (in Chinese with English abstract) Karger DN, Wilson AM, Mahony C, Zimmermann NE, Jetz W ( 2021 ) Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Scientific Data , 8 , 307. Kreft H, Jetz W, Mutke J, Kier G, Barthlott W ( 2008 ) Global diversity of island floras from a macroecological perspective. Ecology Letters , 11 , 116-127. Kubota Y, Shiono T, Kusumoto B ( 2015 ) Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the East Asian continental islands. Ecography , 38 , 639-648. Liu J, Matthews TJ, Zhong L, Liu J, Wu D, Yu M ( 2020 ) Environmental filtering underpins the island species—Area relationship in a subtropical anthropogenic archipelago. Journal of Ecology , 108 , 424-432. Liu JL, Liu TT, Zhou YY, Chen Y, Lu LJ, Jin XJ, Hu RY, Zhang YP, Zhang YH ( 2023 ) Plant diversity on islands in the Anthropocene: Integrating the effects of the theory of island biogeography and human activities. Basic and Applied Ecology , 72 , 45-53. Liu XY, Zhao CL, Xu MS, Liang QM, Zhu XT, Li L, Yan ER ( 2019 ) Beta diversity of vascular plants and its drivers in sea-islands of eastern China. Biodiversity Science , 27 , 380-387. (in Chinese with English abstract) [刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣 ( 2019 ) 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性 , 27 , 380-387.] Lomolino MV ( 2000 ) Ecology’s most general, yet protean pattern: The species-area relationship. Journal of Biogeography , 27 , 17-26. Lomolino MV, Riddle BR, Whittaker RJ ( 2017 ) Biogeography, 5th edn Oxford University Press, Sunderland, MA. MacArthur RH, Wilson EO ( 1967 ) The Theory of Island Biogeography . Princeton University Press, Princeton. Matthews TJ, Triantis K ( 2021 ) Island biogeography. Current Biology , 31, R1201-R1207. NSII National Specimen Information Infrastructure ( 2022 ) Specimen Search Portal . http://www.nsii.org.cn/2017/. (accessed on 2022-01-08). (accessed on 2022-01-08) Pierce S, Negreiros D, Cerabolini BEL, Kattge J, Díaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom P, Frenette-Dussault C, Weiher E, Pinho BX, Cornelissen JHC, Grime JP, Thompson K, Hunt R, Wilson PJ, Buffa G, Nyakunga OC, Reich PB, Caccianiga M, Mangili F, Ceriani RM, Luzzaro A, Brusa G, Siefert A, Barbosa NPU, Chapin III FS, Cornwell WK, Fang JY, Fernandes GW, Garnier E, Stradic SL, Peñuelas J, Melo FPL, Slaviero A, Tabarelli M, Tampucci D ( 2017 ) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology , 31 , 444-457. R Core Team ( 2022 ) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria . https://www.R-project.org. (accessed on 2023-09-01) Russell JC, Kueffer C ( 2019 ) Island biodiversity in the Anthropocene. Annual Review of Environment and Resources , 44 , 31-60. Schrader J, König C, Triantis K, Trigas P, Kreft H, Weigelt P ( 2020 ) Species-area relationships on small islands differ among plant growth forms. Global Ecology and Biogeography , 29 , 814-829. Šímová I, Violle C, Svenning J, Kattge J, Engemann K, Sandel B, Peet RK, Wiser SK, Blonder B, McGill BJ, Boyle B, Morueta-Holme N, Kraft NJB, van Bodegom PM, Gutiérrez AG, Bahn M, Ozinga WA, Tószögyová A, Enquist BJ ( 2018 ) Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography , 45 , 895-916. Song YC ( 2013 ) Evergreen Broad-leaved Forests in China: Classification, Ecology, and Conservation Science Press, Beijing . (in Chinese) Storch D, Keil P, Jetz W ( 2012 ) Universal species-area and endemics-area relationships at continental scales. Nature , 488 , 78-81. The Editorial Committee of Sea Islands of China ( 2014 ) Sea Islands of China . China Ocean Press, Beijing. (in Chinese) Triantis KA, Sfenthourakis S ( 2012 ) Island biogeography is not a single-variable discipline: The small island effect debate. Diversity and Distributions , 18 , 92-96. Valli AT, Kougioumoutzis K, Iliadou E, Panitsa M, Trigas P ( 2019 ) Determinants of alpha and beta vascular plant diversity in Mediterranean island systems: The Ionian Islands, Greece. Nordic Journal of Botany , 37 , e02156. Vellend M ( 2010 ) Conceptual synthesis in community ecology. The Quarterly Review of Biology , 85 , 183-206. Vellend M ( 2016 ) The Theory of Ecological Communities (MPB-57 ). Princeton University Press, Princeton. Vellend M (translated by Zhang J, Zhang ZC, Wang YZ, Liu XY, Song HJ, Gao ZW, Wang X, Zhang R)( 2020 ) The Theory of Ecological Communities . Higher Education Press, Beijing. (in Chinese) Walentowitz A, Troiano C, Christiansen JB, Steinbauer MJ, Barfod AS ( 2022 ) Plant dispersal characteristics shape the relationship of diversity with area and isolation. Journal of Biogeography , 49 , 1599-1608. Wang DR, Zhao YH, Tang SP, Liu XX, Li WD, Han P, Zeng D, Yang Y, Wei GP, Kang Y, Si XF ( 2023 ) Nearby large islands diminish biodiversity of the focal island by a negative target effect. Journal of Animal Ecology , 92 , 492-502. Wang GM, Ye B ( 2017 ) Floristic composition and diversity of typical plant community in Zhoushan Archipelago, East China. Chinese Journal of Ecology , 36 , 349-358. (in Chinese with English abstract) Weigelt P, Kreft H ( 2013 ) Quantifying island isolation—Insights from global patterns of insular plant species richness. Ecography , 36 , 417-429. WFO World Flora Online ( 2023 ) An Online Flora of All Known Plants . http://www.worldfloraonline.org. (accessed on 2023-10-15) Xie YQ, Huang H, Wang CX, He YQ, Jiang YX, Liu ZL, Deng CY, Zheng YS ( 2023 ) Determinants of species-area relationship and species richness of coastal endemic plants in the Fujian Islands. Biodiversity Science , 31 , 22345. (in Chinese with English abstract) [谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善 ( 2023 ) 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素. 生物多样性 , 31 , 22345.] Xu M, Yang A, Yang X, Cao W, Zhang Z, Li Z, Zhang Y, Zhang H, You W, Yan ER, Wardle DA ( 2023 ) Island area and remoteness shape plant and soil bacterial diversity through land use and biological invasion. Functional Ecology , 37 , 1232-1244. Yan ER, Si XF, Zhang J, Chen XY ( 2022 ) Edward O. Wilson and the Theory of Island Biogeography. Biodiversity Science , 30 , 22024. (in Chinese with English abstract) Yu J, Shen L, Li DD, Guo SL ( 2019 ) Determinants of bryophyte species richness on the Zhoushan Archipelago, China. Basic and Applied Ecology , 37 , 38-50. Yu MJ, Hu G, Feeley K, Wu JG, Ding P ( 2012 ) Richness and composition of plants and birds on land-bridge islands: Effects of island attributes and differential responses of species groups. Journal of Biogeography , 39 , 1124-1133. Zanaga D, Van De Kerchove R, Daems D, De Keersmaecker W, Brockmann C, Kirches G, Wevers J, Cartus O, Santoro M, Fritz S, Lesiv M, Herold M, Tsendbazar NE, Xu PP, Ramoino F, Arino O ( 2022 ) ESA WorldCover 10 m 2021 v200 . https://zenodo.org/record/7254221. (accessed on 2023-03-15) Zhang J, Qian H ( 2023 ) U.Taxonstand: An R package for standardizing scientific names of plants and animals. Plant Diversity , 45 , 1-5. Zheng JM, Fang X, Zhu XP, Zhu DD, Deng CY, Huang LJ ( 2017 ) Vegetation characteristics and plant diversity of Waimalangshan Island, Zhoushan. Guihaia , 37 , 271-279. (in Chinese with English abstract) 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响 [J]. 生物多样性, 2023, 31(6): 22518-. 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素 [J]. 生物多样性, 2023, 31(5): 22345-. 陈星, 涂淑雯, 戴尊, 高爽, 王幼芳, 邢诗晨, 魏博嘉, 唐录艳, 师瑞萍, 王晓蕊, 刘永英, 赵东平, 唐霞, 姚雪, 赵明水, 吴晗星, 祁祥斌, 张健, 李敏, 王健. 浙江天目山国家级自然保护区苔藓植物多样性 [J]. 生物多样性, 2023, 31(4): 22649-. 薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文. 亚热带森林中环境和物种多样性对灌木存活的影响 [J]. 生物多样性, 2023, 31(3): 22443-. 高德, 王彦平. 小岛屿效应检测方法研究进展 [J]. 生物多样性, 2023, 31(12): 23299-. 王彦平, 张敏楚, 詹成修. 嵌套分布格局研究进展: 分析方法、影响机制及保护应用 [J]. 生物多样性, 2023, 31(12): 23314-. 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化 [J]. 生物多样性, 2022, 30(12): 22205-. 谢正华, 王有琼, 曹军, 王健敏, 安建东. 传粉昆虫下降背景下的授粉生态弹性: 内涵、机制和展望 [J]. 生物多样性, 2021, 29(7): 980-994. 郭朝丹, 朱金方, 柳晓燕, 赵彩云, 李俊生. 贵州典型自然保护区内外外来入侵草本植物的比较 [J]. 生物多样性, 2021, 29(5): 596-604. 潘玉梅, 张乃莉. 亚热带森林树种多样性对凋落叶分解胞外酶活性的影响 [J]. 生物多样性, 2021, 29(11): 1447-1460. 李通,李俊凝,魏玉莲. 古田山国家级自然保护区木腐真菌物种多样性及分布 [J]. 生物多样性, 2019, 27(1): 81-87. 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素 [J]. 生物多样性, 2019, 27(1): 33-41. 张凤麟, 王昕, 张健. 生物多样性信息资源.II.环境类型数据 [J]. 生物多样性, 2018, 26(1): 53-65. 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平. Beta多样性分解: 方法、应用与展望 [J]. 生物多样性, 2017, 25(5): 464-480. 王昕, 张凤麟, 张健. 生物多样性信息资源. I. 物种分布、编目、系统发育与生活史性状 [J]. 生物多样性, 2017, 25(11): 1223-1238.