随着能源利用效率不断受到重视,市场对更 高精度 和更可靠的 功率分析仪的 需求也在日益增长。功率分析、待机功耗、变压器和逆变器效率,以及由变频器、电机、照明电路、电源等导致的波形失真等都需要精确可靠的测量。作为全球最大的能源和 功率分析仪 器制造商, YOKOGAWA 可以为您提供多种不同领域的选择,其中包括( WT5000高精度功率分析仪 、WT1800E高性能功率分析仪、WT300E系列数字功率计、WT500功率分析仪 、CW500电能质量分析仪等)可以满足您的需求。而且仪器主机享受三年质保。

YOKOGAWA功率分析仪测量技术不仅可以提供一流的精度和稳定性,也可以使精度、可读性、同步测量功能、高级运算以及 谐波分析 和闪变测量功能实现最佳性能。

精度 – 在同类功率分析仪器中, WT1800E 能保证功率精度达到“ 读数的0.05% + 量程的0.05%” , 它可以执行多达500次谐波分析(50/60Hz基波频率)。
可靠 – 测量需要重复执行并需要追求准确性。 WT1800E 稳定性极高, 无论现在还是将来, 都可以确保完成精准的测量。
灵活 – WT1800E 不但拥有最多6输入通道、 宽量程显示和分析功能, 还可以和电脑相连接,能在功率效率和谐波分析领域为客户提供广泛的测量解决方案。

WT300E 系列数字功率计是久负盛名的横河(Yokogawa)紧凑型功率计的第五代产品。横河的功率计产品在确保能耗标准和电气设备功耗测量的领域中长期扮演至关重要的角色。 WT300E系列包括:WT310E单相输入型;WT310EH单相输入/大电流型;WT332E 2输入单元型;WT333E 3输入单元型,精度为读数的0.1% +量程的0.05%。 WT310E提供的电流测量功能最低到50微安左右,高至26安培RMS,能够轻松支持客户测试自己的产品是否符合能源之星、SPECpower 、IEC62301 / EN50564等标准 ,进行电池和待机功耗等低水平电压测试,使用 WT300E 系列无疑是这些应用领理想解决方案。

Energy consumption in low-power and standby modes is an important issue due to increased awareness that energy resources are becoming limited and demand for energy-saving household electrical appliances continues to grow. IEC62301 Ed2.0 (2011) and EN 50564:2011 define standby mode as the lowest energy consumption of an appliance not performing its main function, when connected to the mains. IEC62301 Ed2.0 (2011) defines test methods and requirements for both the mains supply and the test equipment. It is crucial that design and test engineers choose highly accurate power measurement tools to confirm that their devices meet these requirements.

行业应用:
  • 消费电子和家用电器
  • 照明和电源
  • Government agencies that define the standardization of energy efficiency metrics continue to be a driving force behind the development of the next generation electric vehicle powertrains. These metrics require manufacturers to have high confidence in their measurements and motivate the optimization of efficiency.

    行业应用:
  • 汽车电子和新能源汽车
  • 电机和驱动器
  • The specifications for the Type 2553 DC Voltage/Current Standard was changed on June 1982. The service manual was not rewritten to reflect these changes. There are two types of 2553:          1979/4 -- ...
    The part numbers for the 2 piece screws in the WT210 Rack Mount Kit (751533-E2) are listed below: Y9414LB: Binding-head screw (M4, 14mm long) Y9414EB: Flat-head screw (M4,14mm long) If you wish to purchase the screws ...
  • WT1800 High Performance Power Analyzer, WT500 STORE functions can only be used to record NUMERIC data
  • WT1600, WT3000 STORE functions can be used to record both NUMERIC and WAVEFORM data
  • Current Knobs and Pads (Studder) Used on the Direct Input Terminals of the WT500 Part Numbers
  • A9105ZG: Black Current Knob Set of 2 B9292GX: Pad (Studder) Set of 10
  • You can read the average active power during continuous integration mode (just before the integral resets) for the WT230, by monitoring the status of the ITG or ITM bits of the extended event register. Bit 1 ITG is ...
    Yes, it is possible to alter the standard model WE7000. The following is a list of range standard special order specifications and correspond models. Current Range 1/10 A Model: WT1010, WT1030, WT1030M, WT2010, ...
    Output function: HArWhen the default output item is set to 1, the printout time for up to the 50th order is about 116 seconds. The printout time for up to the 25th order is about 75 seconds. Output function: HArWhen the ...
    You can use the Power Viewer (Model 253734) software. However if you only need to view waveforms, we recommend you use the Waveform Viewer (Model 700919, version 1.23 or later) software. The trial version of the Power ...
    The actual display update rate is shown below for observation times from 2 ms to 100 ms. 2 ms : 0.8 s 4 ms : 0.9 s 10 ms : 1.2 s 20 ms : 1.8 s 40 ms : 1.8 s 100 ms : 1.8 s Measurement Conditions Modules mounted : ...
    Send the "OFDO" command.This command turns all items for output OFF. Therefore no items will be output if you send the "OD" command. Send the "OF1,1" command to the measuring instrument. This command turns the voltage ...
    Send the "NUMERIC:FORMAT:ASCII" command This sets the data format for the data you want to read out. Measured data read out using the "NUMERIC:NORMAL:VALUE?" command is output as an ASCII string. Send the ...
    Send the "MEASURE:ITEM:NORMAL:PRESET:CLEAR" command. This command turns all items for output OFF. Therefore no items will be output if you send the "MEASURE:VALUE?" command. Send the "MEASURE:ITEM:NORMAL:V:ELEMENT1 ON" ...
    Send the "OF1,1,1" commandThis command sets the voltage value (V) from element 1 to output to channel 1 (from among the 14 output channels), and causes the voltage of element 1 to be read out. In the same manner, make ...
    Send the "MEASURE:NORMAL:ITEM:PRESET:CLEAR" command to the measuring instrument. This command turns all items for output OFF. Therefore no items will be output if you send the "MEASURE:NORMAL:VALUE?" command. Send the ...
    In the three-phase three-wire, or 3V3A wiring scheme, the phase angle of voltage between each input element is 60 degrees because it is the line to line voltage that is measured. Please download and refer to the ...
    This is due to measurement and calculation error, or differences in calculation methods. On the WT, the three-phase apparent power (ΣS) equation is calculated under the assumption of a balanced condition (the ...
    Is there any crosstalk (especially around the 2nd order)? Are there any effects of CMRR (especially around the 2nd order)? Is the location of measurement immediately next ...
    The input terminals on all Yokogawa power meteras are located on the rear panel. This takes into account safety when handling the measuring instrument.  The signal input to the power meter normally carries high ...
    WT230 and WT210 are low-cost power meters. So, a low-cost, modest performance DSP utilized.This DSP has slow calculation. WT3000 is performing complicated ...
    What is the maximum size of ATA Flash Card we can use with the WT3000? The maximum size of the card to save data is 16GByte. The maximum size of the card used for firmware updating procss is limited to 256MByte.(A ...
  • Power Analyzer Accuracy and Basic Uncertainty Calculator from Yokogawa Test&Measurement
  • Determine uncertainty in voltage, current, and active power (watts) measurement values
  • Various frequency ranges and wiring systems
  • Wiring System set to 3P3W or 3V3A ITEM set to φUi-Uj Element set to ΣA ITEM set to φUi-UkWiring 3P4W or 3P3W(3V3A)Assign element 1,2, 3 to ΣA Update rate is not too fast (
    "Zero level correction" is performed only when the setting initialization accompanies one of the following change. Switching normal measurement/harmonics measurement. Switching the voltage range. Switching the current ...
  • Introduction & Product Familiarization
  • Basic System & Wiring Configurations
  • Basic Setup and Operating Features
  • Step-by-Step Video Demonstrations of Features
  • Connecting to Instrument
  • Setup, Measure, and Analyze
  • File Operations: Saving and Loading Data
  • Video Demonstrations
  • The current sensor element for the Yokogawa Test&Measurement WT5000 Precision Power Analyzer is ideal for applications requiring a current transformer for high-current measurements. The internal DC power supply simplifies preparations before measurement, requiring only a connecting cable and eliminating the external power supply.

    The WT5000, an industry-leading power analyzer, features seven field-removeable elements, 10 MS/s, 1 MHz power bandwidth, 18-bit resolution, and 0.03% basic power accuracy. Yokogawa Test&Measurement continues to innovate on the platform, enabling /D7 data streaming, /G7 harmonics, and flicker analysis.

    The new current sensor element replaces the traditional current inputs and includes a sensor input terminal with integrated ±15V power supply, eliminating the need for an external power supply. The isolated voltage terminals remain the same as the 5A and 30A elements.

    Test and measurement engineering work groups can have differing priorities and requirements, which often results in multiple instrumentation systems and data file formats, as well as incompatible reporting. This lack of effective communication between groups and instruments causes decreased efficiency and quality and increased spending and time to market. Unify test and measurement instrumentation, software, and data across engineering teams with a suite of solutions that caters to the different needs of engineering work groups, including accurate power data, fast sampling rates, long recordings of multiple different input types, and insights into waveform data.

    This video demonstrates how to measure transient phenomena on power signals using the Yokogawa Test&Measurement PX8000 Precision Power Scope.

    In several applications, especially those testing AC power to a standard such as IEC61000-3-11, the voltage and current signals must be monitored to confirm there are no major dips and/or swells in the signal. This can be done with instruments capable of reporting rms values, including power analyzers, traditional oscilloscopes, and some data acquisition systems.

    To test to a standard, however, the instrument must have an accuracy spec that is traceable back to a national standard of calibration such as ISO17025 or NIST.

    Having multiple memory options allows engineering groups to optimize how data is stored, no matter if you need to record for a long time at slower sampling rates, do a fast capture at high sampling rates, or anything in between.

    The Yokogawa Test&Measurement DL950 ScopeCorder operates as an oscilloscope and incorporates the ability to record data for long periods of time like a data acquisition recorder. There are four memory types on the DL950 ScopeCorder: internal memory, solid state drive, flash memory, and PC storage through the IS8000 Integrated Test and Measurement Software Platform. This videos talks about the advantages of each of these and how to pick the best data recording method for you.

    This video demonstrates how to test to an IEC standard (IEC 61000) using a Yokogawa Test&Measurement WT5000 Precision Power Analyzer and the harmonic flicker testing software. The software automates the process of judging if the device under test is compliant with the chosen standard and allows you to output the necessary test reports for your records.

    While DC power measurements are relatively straight forward, AC power measurements that include distorted waveforms, varying power factors, and multiple phases can add complexity to an otherwise simple measurement. During this webinar, we cover multiple fundamentals of power measurement.

    Key topics include:

  • Multi-phase measurements
  • Measurement techniques
  • Measurement applications
  • Real-world examples and more
  •