相关文章推荐
苦恼的小蝌蚪  ·  中冰经贸关系·  4 月前    · 
千杯不醉的牙膏  ·  TreeView 概述 - WPF ...·  7 月前    · 

女王控的博客

Python 后端 oom 处理过程

背景

python 的 django 后端在刚启动时内存占用上升很快,导致对应的 pod 内存溢出,很多接口响应慢

需要找到哪行代码导致的内存泄漏,有以下方案

  • pympler
  • scalene (python3.8 以上,不符合)
  • memray (python3.7 以上,不符合)
  • 使用 python 内置的 tracemalloc 库
  • 由于项目用的是 python 3.6 的版本,所以采用方案 1 和 4

    内存占用检测

  • 通过接口获取当前内存占用最大的排名前几的代码行数
  • 通过接口获取当前占用内存最大的对象
  • controllers/app_monitor_controller.py

    import tracemalloc
    import logging
    from controllers.wrapper import (
        get_param, get_int_param, request_wrapper)
    @request_wrapper()
    def get_tracemalloc(request):
        key_type = get_param(request, 'key_type', default='traceback')
        limit = get_int_param(request, 'limit', default='10')
        snapshot = tracemalloc.take_snapshot()
        snapshot = snapshot.filter_traces((
            tracemalloc.Filter(False, "<unknown>"),
            tracemalloc.Filter(
                False, "<frozen importlib._bootstrap_external>"),
            tracemalloc.Filter(
                False, "<frozen importlib._bootstrap>"),
            tracemalloc.Filter(False, tracemalloc.__file__),
        top_stats = snapshot.statistics(key_type)
        top_result = []
        for index, stat in enumerate(top_stats[:limit], 1):
            frame = stat.traceback[0]
            desc = "#%s: %s:%s: %.1f KiB" % (
                index, frame.filename, frame.lineno, stat.size / 1024)
            top_result.append({
                'desc': desc,
                'traceback': stat.traceback.format()
        other = top_stats[limit:]
        if other:
            size = sum(stat.size for stat in other)
        total = sum(stat.size for stat in top_stats)
        return {
            'top_result': top_result,
            'other_result': "Total %s, other: %.1f KiB" %
            (len(other), size / 1024),
            'total_size': "%.1f KiB" % (total / 1024)
    @request_wrapper()
    def get_memory(request):
        limit = get_int_param(request, 'limit', default='1')
        from pympler import muppy, summary
        all_objects = muppy.get_objects()
        sum1 = summary.summarize(all_objects)
        logging.info('Summary -----')
        summary.print_(sum1)
        filter_all_objects = muppy.sort(all_objects)
        dicts = [ao for ao in filter_all_objects if isinstance(ao, dict)]
        result = []
        for d in dicts[-limit:]:
            item = f'{len(d)}, {str(d).encode("utf-8")}'
            result.append(item)
        import objgraph
        logging.info('Common -----')
        objgraph.show_most_common_types()
        logging.info('Growth -----')
        objgraph.show_growth(limit=5)
        return result

    这里需要在项目启动的时候去开启记录内存的功能,否则上面的 get_tracemalloc 功能不可用,当然这里的功能需要在使用结束后立即关闭,否则内存占用较大

    apps.py

    from django.apps import AppConfig
    import tracemalloc
    import os
    # 减少 pypinyin 的内存占用
    os.environ['PYPINYIN_NO_PHRASES'] = 'true'
    os.environ['PYPINYIN_NO_DICT_COPY'] = 'true'
    class Config(AppConfig):
        def ready(self):
            from entry.settings import START_RECORD_MEMORY
            if not START_RECORD_MEMORY:
                return
            tracemalloc.start(25)

    主要用来统计函数执行过程中每行耗时及调用次数

    tools/performance_tool.py

    from cProfile import Profile
    from pstats import Stats
    def print_func_cost():
        def wrapper2(func):
            def wrapper1(*args, **kwargs):
                profiler = Profile()
                # request = args[0]
                result = profiler.runcall(func, *args, **kwargs)
                stats = Stats(profiler)
                stats.strip_dirs()
                stats.sort_stats('cumulative')
                # stats.print_stats()
                stats.print_callers()
                return result
            return wrapper1
        return wrapper2

    由以下日志可看出,内存占用较大的部分主要在 protobuf 解码,大文件读取,pypinyin,之后的优化就可以进行下去

    07:56:48 apps.py:37 INFO #1: /usr/local/lib/python3.6/site-packages/google/protobuf/text_format.py:682: 114541.4 KiB
    07:56:48 apps.py:43 INFO     b'  File "文件路径", line 1580'
    07:56:48 apps.py:43 INFO     b'    data = text_format.Parse(data, DataTree())'
    07:00:05 apps.py:33 INFO #2: 文件路径:1571: 66375.2 KiB
    07:00:05 apps.py:37 INFO     b"data = data + open(file_path, 'r').read()"
    07:00:05 apps.py:33 INFO #8: 文件路径:1569: 2053.4 KiB
    07:00:05 apps.py:37 INFO     b"data = data + open(file_path, 'r').read()"
    07:56:52 apps.py:37 INFO #5: /usr/local/lib/python3.6/site-packages/pypinyin/phrases_dict.py:45476: 2560.4 KiB
      07:56:52 apps.py:43 INFO     b'  File "文件路径", line 26'
    07:56:52 apps.py:43 INFO     b'    from pypinyin import lazy_pinyin'

    评论

    阅读上一篇

    缓存报错重试机制探究
    2023-11-30 17:47:38

    阅读下一篇

    记一次处理高德地图浏览器兼容性问题
    2023-11-28 16:55:48
    目录