无网格局部Petrov-Galerkin法及程序设计(1)——研究背景

无网格局部Petrov-Galerkin法及程序设计(1)——研究背景

参考资料

G.R.Liu. 2010. Mesh Free Methods: Moving Beyond the Finite Element Method. Second Edition.

G.R.Liu. and Y.T.Gu. 2005. An Introduction to Meshfree Methods and Their Programming

张雄.2003.无网格方法

地球物理局 地震波动力学研究所 无网格组
# 欢迎批评指正,禁止转载

目录


研究背景

无单元Galerkin(EFG)方法需要背景单元网格,以便在计算系统矩阵时进行积分。需要背景单元进行积分的原因是使用Galerkin弱形式来生成离散系统方程。是否可以不使用弱形式?答案是肯定的:已经开发出了可用于强形式的无网格方法,例如不规则有限差分法 [1] [2] ,有限点法 [3] 和局部点配置法 [4] [5] [6] [7] [8] 。但是,这些方法通常对于节点不规则性不是很稳定,并且获得的结果可能不太准确。人们仍在致力于使这些方法变得更稳定,特别是在使用具有适当设计的正则化技术的局部径向函数的方向上 [7] [8]

在使用加权残量法时,如果我们像在点配置方法中那样,尝试使用点的局部域中的信息逐点满足方程,则可以在局部域上通过进行数值积分来局部实现积分形式。由Atluri和Zhu [9] 提出的无网格局部Petrov-Galerkin(MLPG)方法使用了Petrov-Galerkin残量公式的所谓局部弱形式。多年来,对MLPG进行了微调、改进和扩展 [10] [11] [12] [13] [14] [15] [16] [17] 。我们详细介绍了用于二维(2D)固体力学问题的MLPG方法。

在MLPG实现中,采用移动最小二乘(MLS)近似来构造形状函数。因此,类似于EFG方法,存在强加基本边界条件的问题。在 [10] [11] 中提出的原始MLPG使用惩罚方法。在 [13] 中的公式中,使用了一种称为直接插值的方法。这里介绍了这两种方法,此外还有用于自由振动问题的正交变换方法。

我们给出了许多基准示例,以说明MLPG方法的过程和有效性。通过这些示例还研究了不同参数(包括MLPG不同域的尺寸)对结果准确性的影响。

尽管MLPG中的逐节点过程与配点法非常相似,但由于使用了局部积分加权残量的局部弱形式,因此MLPG对于节点不规则性更为稳定。由于在局部Petrov-Galerkin公式中使用了MLS形状函数,因此MLPG可以重现包含在MLS形状函数基础上的多项式。补丁程序测试示例将证明这一事实。


封面图: [18]

参考

  1. ^ Liszka, T. and Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. Struct., 11, 83–95, 1980.
  2. ^ Jensen, P. S., Finite difference techniques for variable grids, Comput. Struct., 2 , 1 7–29, 1980.
  3. ^ Onate, E., Idelsohn, S., Zienkiewicz, O. C., and Taylor, R. L., A finite point method in computa- tional mechanics applications to convective transport and fluid flow, Int. J. Numer. Methods Eng., 39, 3839–3866, 1996.
  4. ^ Cheng, M. and Liu, G. R., A finite point method for analysis of fluid flow, in Proceedings of the 4th International Asia-Pacific Conference on Computational Mechanics, Singapore, December 1999, pp. 1015–1020.
  5. ^ Xu, X. G. and Liu, G. R., A local-function approximation method for simulating two-dimensional incompressible flow, in Proceedings of the 4th International Asia-Pacific Conference on Computational Mechanics, Singapore, December 1999, pp. 1021–1026.
  6. ^ Song, B., Liu, G. R., Xu, D., and Pan, L. S., Application of finite point method to fluid flow and heat transfer, in Proceedings of the 4th Asia-Pacific Conference on Computational Mechanics, Singapore, December 1999, pp. 1091–1096.
  7. ^ a b Liu, G. R. and Kee, B. B. T., A stabilized least-squares radial point collocation method (LS-RPCM) for adaptive analysis, Comput. Method Appl. Mech. Eng., 195, 4843–4861, 2006.
  8. ^ a b Kee, B. B. T., Liu, G. R., and Lu, C., A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis, Comput. Mech., 40, 837–853, 2007.
  9. ^ Atluri, S. N. and Zhu, T., A new meshless local Petrov–Galerkin (MLPG) approach in computa- tional mechanics, Comput. Mech., 22, 117–127, 1998.
  10. ^ a b Atluri, S. N., Cho, J. Y., and Kim, H. G., Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations, Comput. Mech., 24, 334–347, 1999.
  11. ^ a b Atluri, S. N., Kim, H. G., and Cho, J. Y., A critical assessment of the truly meshless local Petrov–Galerkin (MLPG), and local boundary integral equation (LBIE) methods, Comput. Mech., 24, 348–372, 1999.
  12. ^ Ouatouati, A. E. and Johnson, D. A., A new approach for numerical modal analysis using the element free method, Int. J. Numer. Methods Eng., 46, 1–27, 1999.
  13. ^ a b Liu, G. R. and Yan, L., A modified meshless local Petrov–Galerkin method for solid mechanics, in Advances in Computational Engineering and Sciences, N. K. Atluri, and F. W. Brust, eds., Tech Science Press, Palmdale, CA, 2000, pp. 1374–1379.
  14. ^ Liu, G. R. and Gu, Y. T., Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches, Comput. Mech., 26, 536–546, 2000.
  15. ^ Liu, G. R. and Gu, Y. T., On formulation and application of local point interpolation methods for computational mechanics, in Proceedings of the First Asia-Pacific Congress on Computational Mech- anics, Sydney, Australia, November 20–23, 2001, pp. 97–106 (invited paper).
  16. ^ Gu, Y. T. and Liu, G. R., A meshless local Petrov–Galerkin (MLPG) method for free and forced vibration analyses for solids, Comput. Mech., 27(3), 188–198, 2001.
  17. ^ Gu, Y. T. and Liu, G. R., A meshless local Petrov–Galerkin (MLPG) formulation for static and free vibration analyses of thin plates, Comput. Model. Eng. Sci., 2(4), 463–476, 2001.
  18. ^ https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1596901511635&di=cbf344e39fe097656590b0eecc1573b9&imgtype=0&src=http%3A%2F%2Fa.hiphotos.baidu.com%2Fbaike%2Fpic%2Fitem%2F3b87e950352ac65c58a14bd0fbf2b21192138ae8.jpg
编辑于 2020-08-08 21:08

文章被以下专栏收录