相关文章推荐
3vti1qhhvcgxwespkody  ·  杨毅·  4 月前    · 
3vti1qhhvcgxwespkody  ·  杨毅- 地理科学学院·  4 月前    · 

近年来, 围绕“纳米颗粒物的环境行为与效应”,开展纳米颗粒物的微观特征和形成机理与宏观的源汇过程及其 环境效应相结合的研究 。关注要点:

天然环境中纳米颗粒物的分离、定量化表征和鉴别方法体系的开发;

天然环境中典型纳米颗粒物的形成机理与溯源;

典型纳米颗粒物对环境中有毒污染物(如重金属、有机污染物和抗性基因等)行为的影响。

-------------------------------------------------------------------------------------------------------------


现面向国内外招收博士后

(纳米颗粒物的源解析和环境行为、 污染物环境多介质的行为 等方面研究背景优先)

现面向国内外招收博士生和硕士生

(环境科学、生物地球化学、地理学、海洋学等背景优先)

欢迎有志于环境地理学研究的学者、学生加入“纳米颗粒物的环境行为与效应”团队。


国家重点研发计划项目“大气污染致病的全链条追因及疾病负担评价研究”课题一(2023.12-2027.11)

国家自然基金杰出青年项目:“纳米颗粒物的环境行为与效应”(2022-2026)

中科院先导科技专项子课题:“典型人类活动产生的纳微颗粒及其启示”(2020-2024)

国家自然基金优秀青年项目:“环境地理学”(2016-2018)

国家自然基金面上项目:“河口水环境中纳米颗粒物对抗生素抗性基因多介质行为的影响及其机制”(2018-2021)

国家自然基金面上项目:“纳米颗粒物对河口水体中药物污染物行为的影响及其机制”

国家自然基金青年项目:“水源地水体中纳米级颗粒物的赋存及其对EDCs的环境意义”

上海市教委“晨光”人才计划资助项目和 教育部博士点基金项目等。



图:纳米颗粒物(Nanoparticles, NPs)的行为过程及其环境意义(课题组绘制;基于Hochella et al. 2019 Science)


如果您对这个图中的任何一个过程感兴趣,您就可以加入我们的团队,我们一起探索并追踪纳米颗粒物和污染物的命运。。。

博士后:


牛作顺

研究方向:纳米颗粒物的生物有效性


博士生:


徐 苗 2020级

研究方向:燃煤产物中特征纳米颗粒物的定量化表征及其指纹分析

闫 佳 2018级(硕博连读)

研究方向:人类活动产生纳米颗粒物的环境指示意义

彭 博 2021级

研究方向:道路灰尘中典型纳米颗粒物及其健康风险

施志强 2022级

研究方向:燃煤源磁性纳米颗粒的排放及其生物有效性

王梦圆 2022级

研究方向:典型环境介质中纳米颗粒的赋存特征及其健康风险

杨晓静 2023级(联合培养)

研究方向:燃煤源纳米颗粒的健康风险评估

汪隆亮 2023级

研究方向:典型自然源纳米颗粒的排放特征

赵煊赫 2023级

研究方向:环境中含Pb纳米颗粒的示踪技术


硕士生:


王芝燕

吴凌燕

崔煜婕

部分已发表论文:

Xu, M., Niu, Z., Shi, Z., Zhang, Y., Meng, M., Yang, X., Wang, M., Ma, X., Zhao, H., Yang, Y.* (2024) High-resolution characterization of coal combustion-derived metal-containing nanoparticles and their health-related implications . Environmental Science and Technology Letters. 11, 611-618. https://doi.org/10.1021/acs.estlett.4c00292


Peng, B., Cai, Q., Shi, X., Wang, Z., Yan, J., Xu, M., Wang, M., Shi, Z., Niu, Z., Guo, X., Yang, Y.* (2024) Metal-containing nanoparticles in road dust from a Chinese megacity over the last decade: Spatiotemporal variation and driving factors . Journal of Hazardous Materials. 476, 134970. https://doi.org/10.1016/j.jhazmat.2024.134970



Niu Z., Xu M., Guo X., Yan J., Liu M., Yang Y.* (2023) Uptake of Silver-Containing Nanoparticles in an Estuarine Plant: Speciation and Bioaccumulation. Environ. Sci. Technol. 57, 16075-16085. https://doi.org/10.1021/acs.est.3c04774


Xu M., Niu Z., Liu C., Yan J., Peng B., Yang Y.* (2023) Oxidative Potential of Metal-Containing Nanoparticles in Coal Fly Ash Generated from Coal-Fired Power Plants in China . Environ. Health 1, 180-190. https://doi.org/10.1021/envhealth.3c00040


Wu J., Yang Y.,* Tou F., Yan X., Dai S., Hower J., Saikia B., Kersten M., Hochella M. (2023) Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. J. Hazard. Mater. 445, 130482. https://www.sciencedirect.com/science/article/pii/S0304389422022762?via%3Dihub

Yang H., Zhang Q., Wu J., Liu L., Wang D., Lu D., Wang W., Min K., Zhang W., Liu Q.*, Yang Y.*, Jiang G. (2023) Evolution of magnetic particulate matter during its emission process in thermal power plants. Environ. Sci. Nano 10, 705-717. https://doi.org/10.1039/D2EN00808D


Wu J., Tou F., Guo X., Liu C., Sun Y., Xu M., Liu M., Yang Y.* (2022) Vast emission of Fe- and Ti-containing nanoparticles from representative coal-fired power plants in China and environmental implications. Sci. Total Environ. 838, 156070. https://doi.org/10.1016/j.scitotenv.2022.156070


Sun Y., Yang Y.*, Tou F., Niu Z., Guo X., Liu C., Yan J., Wu J., Xu M., Hou L., Liu M. (2022) Extraction and Quantification of Metal-containing Nanoparticles in Marine Shellfish Based on Single Particle Inductively Coupled Plasma-Mass Spectrometry Technique. J. Hazard. Mater. 424:127383 https://doi.org/10.1016/j.jhazmat.2021.127383




Liu C., Han G., Hu B.*, Geng F., Liu M., Dai S., Yang Y.* (2021) Fast Screening of Coal Fly Ash with Potential for Rare Earth Element Recovery by Electron Paramagnetic Resonance Spectroscopy. Environ. Sci. Technol. 55, 24: 16716-16722. https://doi.org/10.1021/acs.est.1c06658




Tou F., Niu, Z., Fu, J., Wu, J., Liu, M, Yang, Y.* (2021) Simple Method for the Extraction and Determination of Ti-, Zn-, Ag-, and Au-Containing Nanoparticles in Sediments Using Single-Particle Inductively Coupled Plasma Mass Spectrometry. Environ. Sci. Technol. 55, 15, 10354–10364. https://doi.org/10.1021/acs.est.1c00983


Wu, J.^, Tou, F.^, Yang, Y.*, Liu, C., Hower, J.C., Baalousha, M., Wang, G., Liu, M., Hochella, M. (2021) Metal-Containing Nanoparticles in Low-Rank Coal-Derived Fly Ash from China: Characterization and Implications toward Human Lung Toxicity. Environ. Sci. Technol. 55, 10, 6644–6654. https://doi.org/10.1021/acs.est.1c00434


Niu, Z., Yang, Y.*, Tou, F., Guo, X., Huang, R., Xu, J., Chen, Y., Hou, L, Liu, M., Hochella, M. (2020) Sulfate-reducing bacteria (SRB) can enhance the uptake of silver-containing nanoparticles by a wetland plant. Environmental Science Nano7(3) DOI: 10.1039/C9EN01162E


Feng, J., Guo, X., Chen, Y., Lu, D., Niu, Z., Tou, F., Hou,L., Xu, J., Liu, M., Yang, Y.* (2020) Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Science of the Total Environment. 698:134298 https://doi.org/10.1016/j.scitotenv.2019.134298


Chen, Y., Guo, X., Feng, J., Lu, D., Niu, Z., Tou, F., Hou, L., LIu, M., Yang, Y. * (2019) Impact of ZnO nanoparticles on the antibiotic resistance genes (ARGs) in estuarine water: ARG variations and their association with the microbial community. Environmental Science: Nano. 6, 2405-2419. https://doi.org/10.1039/C9EN00338J (Cover paper,插图设计:唐曦)


Hochella, M.*, Mogk, D., Ranville, J.F., Allen, I.C., Luther, G.W., Marr, L., McGrail, B.P., Murayama, M., Qafoku, N.P., Rosso, K.M., Sahai, N., Schroeder, P.A., Vikesland, P., Westerhoff, P., Yang, Y. (2019) Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363(6434):eaau8299. DOI: 10.1126/science.aau8299 (Invited review, all the authors contributed equally).



Guo, X., Liu, X., Lu, D., Zhao, S, Sun, X., Wu, J., Chen, Y., Tou, F., Hou, L., Liu, M., Yang, Y. * (2018) Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary , China. Environ mental Pollution 242, 576-584.



Niu, Z., Pan, H., Guo, X., LU, D., Feng, J., Chen, Y., Tou. F., Liu, M., Yang, Y.* (2018) Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: Abundance, distribution and implications for the bioavailibility of metals. Science of the Total Environment 634, 296-304.