相关文章推荐
  • Data type routines
  • Mathematical functions with automatic domain
  • Floating point error handling
  • Exceptions and Warnings ( numpy.exceptions )
  • Discrete Fourier Transform ( numpy.fft )
  • Functional programming
  • Input and output
  • Indexing routines
  • Linear algebra ( numpy.linalg )
  • Logic functions
  • Masked array operations
  • Mathematical functions
  • Miscellaneous routines
  • Polynomials
  • Random sampling ( numpy.random )
  • Set routines
  • Sorting, searching, and counting
    • numpy.sort
    • numpy.lexsort
    • numpy.argsort
    • numpy.ndarray.sort
    • numpy.sort_complex
    • numpy.partition
    • numpy.argpartition
    • numpy.argmax
    • numpy.nanargmax
    • numpy.argmin
    • numpy.nanargmin
    • numpy.argwhere
    • numpy.nonzero
    • numpy.flatnonzero
    • numpy.where
    • numpy.searchsorted
    • numpy.extract
    • numpy.count_nonzero
    • Statistics
    • Test support ( numpy.testing )
    • Window functions
    • numpy. argsort ( a , axis = -1 , kind = None , order = None , * , stable = None ) [source] #

      Returns the indices that would sort an array.

      Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in sorted order.

      Parameters :
      a array_like

      Array to sort.

      axis int or None, optional

      Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.

      kind {‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional

      Sorting algorithm. The default is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in general, the actual implementation will vary with data type. The ‘mergesort’ option is retained for backwards compatibility.

      Changed in version 1.15.0.: The ‘stable’ option was added.

      order str or list of str, optional

      When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

      stable bool, optional

      Sort stability. If True , the returned array will maintain the relative order of a values which compare as equal. If False or None , this is not guaranteed. Internally, this option selects kind='stable' . Default: None .

      New in version 2.0.0.

      Returns :
      index_array ndarray, int

      Array of indices that sort a along the specified axis . If a is one-dimensional, a[index_array] yields a sorted a . More generally, np.take_along_axis(a, index_array, axis=axis) always yields the sorted a , irrespective of dimensionality.

      Notes

      See sort for notes on the different sorting algorithms.

      As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is documented in sort .

      Examples

      One dimensional array:

      >>> x = np.array([3, 1, 2])
      >>> np.argsort(x)
      array([1, 2, 0])
      

      Two-dimensional array:

      >>> x = np.array([[0, 3], [2, 2]])
      array([[0, 3],
             [2, 2]])
      
      >>> ind = np.argsort(x, axis=0)  # sorts along first axis (down)
      array([[0, 1],
             [1, 0]])
      >>> np.take_along_axis(x, ind, axis=0)  # same as np.sort(x, axis=0)
      array([[0, 2],
             [2, 3]])
      
      >>> ind = np.argsort(x, axis=1)  # sorts along last axis (across)
      array([[0, 1],
             [0, 1]])
      >>> np.take_along_axis(x, ind, axis=1)  # same as np.sort(x, axis=1)
      array([[0, 3],
             [2, 2]])
      

      Indices of the sorted elements of a N-dimensional array:

      >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
      (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
      >>> x[ind]  # same as np.sort(x, axis=None)
      array([0, 2, 2, 3])
      

      Sorting with keys:

      >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
      array([(1, 0), (0, 1)],
            dtype=[('x', '<i4'), ('y', '<i4')])
      
      >>> np.argsort(x, order=('x','y'))
      array([1, 0])
      
      >>> np.argsort(x, order=('y','x'))
      array([0, 1])
      
  •  
    推荐文章