任舒波, 韩同城, 符力耘. 2020. 不同压力下部分饱和砂岩纵波衰减的理论及实验研究. 地球物理学报, 63(7): 2722-2736, doi: 10.6038/cjg2020O0021
引用本文: 任舒波, 韩同城, 符力耘. 2020. 不同压力下部分饱和砂岩纵波衰减的理论及实验研究. 地球物理学报, 63(7): 2722-2736, doi: 10.6038/cjg2020O0021 通讯作者: 韩同城, 男, 1982年生, 教授, 博士生导师, 主要从事岩石物理学、岩石声电联合性质、岩石和沉积物的物理性质研究.E-mail: hantc@upc.edu.cn

中图分类号:

深入了解不同压力、频率、流体含量和流体分布对岩石中弹性波传播特性的影响,对指导油气勘探开发具有重要意义.不同尺度下的波致流效应,是声波传播过程中产生速度频散和衰减的重要原因.本文以不同压力下水饱和区域改进的骨架模量为纽带,建立了联合介观尺度斑块饱和效应与微观尺度喷射流效应的部分饱和岩石声学理论模型.开展针对性声学实验,根据不同压力下部分饱和砂岩纵波速度测量数据,确定理论模型中的相关参数,从而实现对不同压力下部分饱和岩石纵波衰减的定量表征.在此基础上,通过理论与实验测量的纵波衰减的对比,分析不同压力、含水饱和度以及频率对岩石纵波衰减的影响.研究结果表明,在较低压力,较高含水饱和度以及较高频段,喷射流效应较强,因此新建模型计算的衰减明显大于斑块饱和模型的衰减.由于新建模型体现了斑块饱和效应与喷射流效应的综合影响,相比于斑块饱和模型,新建模型计算的部分饱和岩石的纵波衰减更接近于实测衰减,但受到岩石自身因素影响,新建模型计算的衰减仍略小于实测衰减.

Understanding the effects of pressures, frequencies, fluid content, and fluid distributions on the elastic wave propagation in reservoir rocks is of great importance in guiding oil and gas exploration. Wave-induced fluid flow at different scales is a major cause of the velocity dispersion and attenuation during the propagation of elastic waves. In this work, a new model of partially saturated rock was proposed by combining patchy saturation effects in mesoscale and squirt flow effects in microscale, based on the modified frame modulus of water saturated regions under pressures. On the other hand, we measured the P-wave velocity and attenuation of partially saturated sandstones with varying pressures. After calibrating the unknown parameters in the proposed model using the measured velocity, the model can be employed to quantitatively characterize the P-wave attenuation. The influence of pressures, water saturation and frequencies on the P-wave attenuation in rocks was further analyzed by the comparison between the modeled attenuation and the measured values. The results show that the squirt flow effects made the attenuation calculated by the new model significantly larger than that calculated by the patchy saturation model at low pressures, high water saturation and high frequency bands. Because it combines both patchy saturation and squirt flow effects, the P-wave attenuation of partially saturated rocks calculated by the new model is closer to the measured attenuatio compared with the patchy saturation model, although the modeled attenuation still slightly underestimates the measured attenuation.

Mesoscale Microscale Wave-induced fluid flow P-wave attenuation Amalokwu K, Papageorgiou G, Chapman M, Best A I. 2017. Modelling ultrasonic laboratory measurements of the saturation dependence of elastic modulus:New insights and implications for wave propagation mechanisms. International Journal of Greenhouse Gas Control , 59:148-159, doi: 10.1016/j.ijggc.2017.02.009 . Deng J X, Wang S X, Yu J. 2005b. The effects of pore fluid distribution to the experimental velocity of partially saturated reservoir sandstones. Geophysical Prospecting for Petroleum (in Chinese), 44(5):495-498. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sywt200505018 Wang B Z, Zhu Y, Wang D. 2008. Fluid mechanism models and their velocity dispersions in porous media. Progress in Exploration Geophysics (in Chinese), 31(6):405-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ktdqwljz200806001 巴晶, Carcione J M, 曹宏等. 2012.非饱和岩石中的纵波频散与衰减:双重孔隙介质波传播方程.地球物理学报, 55(1):219-231, doi: 10.6038/j.issn.0001-5733.2012.01.021 . http://www.geophy.cn//CN/abstract/abstract8395.shtml 巴晶, 晏信飞, 陈志勇等. 2013.非均质天然气藏的岩石物理模型及含气饱和度反演.地球物理学报, 56(5):1696-1706, doi: 10.6038/cjg20130527 . http://www.geophy.cn//CN/abstract/abstract9487.shtml 邓继新, 王尚旭, 杜伟. 2012.介观尺度孔隙流体流动作用对纵波传播特征的影响研究——以周期性层状孔隙介质为例.地球物理学报, 55(8):2716-2727, doi: 10.6038/j.issn.0001-5733.2012.08.024 . http://www.geophy.cn//CN/abstract/abstract8842.shtml 杜赟, 席道瑛, 徐松林等. 2009.多孔岩石波传播的热弛豫模型修正.地球物理学报, 52(12):3051-3060, doi: 10.3969/j.issn.0001-5733.2009.12.014 . http://www.geophy.cn//CN/abstract/abstract1251.shtml 刘炯, 马坚伟, 杨慧珠. 2010. White球状Patchy模型中纵波传播研究.地球物理学报, 53(4):954-962, doi: 10.3969/j.issn.0001-5733.2010.04.020 . http://www.geophy.cn//CN/abstract/abstract3014.shtml 聂建新, 杨顶辉, 巴晶. 2010.含泥质低孔渗各向异性黏弹性介质中的波频散和衰减研究.地球物理学报, 53(2):385-392, doi: 10.3969/j.issn.0001-5733.2010.02.016 . http://www.geophy.cn//CN/abstract/abstract1278.shtml Figure 1.

Schematic of White′s model with patchy saturation (a) and schematic of a characteristic element (b) (adapted from Dutta and Ode, 1979 )

Figure 2.

Original (a) and focused (b) P-wave waveforms of sample B2 at different pressures when the saturation is 0.7013

Figure 3.

P-wave velocity versus water saturation at different pressures for Sample B2 (a) and Sample B5 (b)

Figure 4.

The experimentally measured variation of total porosity with pressure in comparison with the dual porosity model fitting of the total, stiff and compliant porosity, respectively, for (a) Sample B2 and (b) Sample B5

Figure 5.

Comparison of the measured dry and saturated rock velocity with the model predicted velocity of the saturated rock at different pressures for (a) Sample B2 and (b) Sample B5

Figure 6.

P-wave velocity (a) and attenuation (b) versus water saturation at the pressure of 5 MPa for sample B5

Figure 7.

P-wave velocity (a) and attenuation (b) versus water saturation at the pressure of 30 MPa for sample B5

Figure 8.

P-wave velocity (a) and attenuation (b) versus water saturation at the pressure of 60 MPa for sample B5

Figure 9.

Comparison of P-wave velocities dispersion (a) and attenuation (b) as a function of water saturation at pressure of 30 MPa for sample B5