乔渭阳, 仝帆, 陈伟杰, 王勋年, 陈正武. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98-121. doi: 10.7638/kqdlxxb-2017.0162
引用本文:
乔渭阳, 仝帆, 陈伟杰, 王勋年, 陈正武. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98-121.
doi:
10.7638/kqdlxxb-2017.0162
QIAO Weiyang, TONG Fan, CHEN Weijie, WANG Xunnian, CHEN Zhengwu. Review on aerodynamic noise reduction with bionic configuration[J]. ACTA AERODYNAMICA SINICA, 2018, 36(1): 98-121. doi: 10.7638/kqdlxxb-2017.0162
Citation:
QIAO Weiyang, TONG Fan, CHEN Weijie, WANG Xunnian, CHEN Zhengwu. Review on aerodynamic noise reduction with bionic configuration[J].
ACTA AERODYNAMICA SINICA
, 2018, 36(1): 98-121.
doi:
10.7638/kqdlxxb-2017.0162
乔渭阳, 仝帆, 陈伟杰, 王勋年, 陈正武. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98-121. doi: 10.7638/kqdlxxb-2017.0162
引用本文:
乔渭阳, 仝帆, 陈伟杰, 王勋年, 陈正武. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98-121.
doi:
10.7638/kqdlxxb-2017.0162
QIAO Weiyang, TONG Fan, CHEN Weijie, WANG Xunnian, CHEN Zhengwu. Review on aerodynamic noise reduction with bionic configuration[J]. ACTA AERODYNAMICA SINICA, 2018, 36(1): 98-121. doi: 10.7638/kqdlxxb-2017.0162
Citation:
QIAO Weiyang, TONG Fan, CHEN Weijie, WANG Xunnian, CHEN Zhengwu. Review on aerodynamic noise reduction with bionic configuration[J].
ACTA AERODYNAMICA SINICA
, 2018, 36(1): 98-121.
doi:
10.7638/kqdlxxb-2017.0162
飞机/发动机噪声控制技术是目前绿色航空概念的主要目标之一,也是航空领域大国间竞争的关键技术。经过半个多世纪气动声学理论和飞机/发动机噪声控制技术研究后,进一步降低飞机噪声遇到了技术瓶颈。湍流宽频噪声由于其物理机制的复杂性、流动过程的无法避免性和在飞机/发动机流场中存在的普遍性,已成为当前气动噪声控制的难点和重点。以“师法自然”为核心的仿生学气动噪声控制,得到了前所未有的重视和研究,为气动噪声控制提供了新的思想,并构成了气动噪声控制的新方向。以飞机/发动机湍流宽频噪声控制为对象,首先回顾了仿生学气动噪声控制技术的研究历史,并详细介绍了机翼/叶片尾缘和前缘的仿生学降噪研究现状和发展动态,分析了目前仿生学气动噪声控制理论和技术的主要问题及未来的研究重点和发展方向。
仿生学 /
锯齿尾缘 /
波浪前缘 /
气动噪声 /
Abstract:
Aircraft/engine noise control technology is not only one of the main goals of the current concept of green aviation, but also the key technology among big nations in aviation competition. After more than half a century of study on the aeroacoustics theory and the aircraft/engine noise control technology, further reduction of the aircraft noise encounters technical bottlenecks. Turbulence broadband noise has become a difficulty and the focus of the current aerodynamic noise control due to the complexity of its physical mechanism, the unavoidability during the flow process, and the universality in the airplane/engine flow field. In order to achieve the dream of ultra-quiet flight in the future, "learning from nature" which is the core of the noise control using bionic methods, has received unprecedented attention and been investigated extensively. Learning from nature can help to provide new aerodynamic noise control ideas and becomes a new vibrant aerodynamic noise control field. This paper addresses the aircraft/engine turbulence broadband noise control. Firstly, the history of the aerodynamic noise control with bionic methods is reviewed. Then a detailed introduction is presented for the current research situation of airfoil/blade trailing edge and leading edge noise reduction with bionic technologies. Finally, the main problems and future development directions of aerodynamic noise control with bionic methods are analyzed.
Key words:
bionics /
serrated trailing edges /
wavy leading edges /
aerodynamic noise /
broadband noise
Comparison of straight trailing edge and serrated trailing edge airfoil noise under 4.2° attack angle
[
18
]
(solid lines: straight trailing edge; dashed lines: serrated trailing edge)
朱自强, 兰世隆.民机机体噪声及其降噪研究[J].航空学报, 2015, 36(2):406-421.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201502002&dbname=CJFD&dbcode=CJFQ
Zhu Z Q, Lan S L. Study of airframe noise and its reduction for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):406-421. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201502002&dbname=CJFD&dbcode=CJFQ
Logue M M, Atassi H M. Passive control of fan broadband noise[C]//15th AIAA/CEAS Aeroacoustics Conference. AIAA 2009-3149.
Moreau A, Enghardt L. Ranking of fan broadband noise sources based on an experimental parametric study[C]//15th AIAA/CEAS Aeroacoustics Conference. AIAA 2009-3222.
Howe M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluid and Structures, 1991, 5(1):33-45.
doi:
10.1016/0889-9746(91)80010-B
Howe M S. Noise produced by a sawtooth trailing edge[J]. Acoustical Society of America Journal, 1991, 90(1):482-487.
http://www.mendeley.com/catalog/noise-produced-sawtooth-trailing-edge/
Dassen T, Parchen R, Bruggeman J, et al. Results of a wind tunnel study on the reduction of airfoil self-noise by the application of serrated blade trailing edges[R]. Germany: NLR, NLR TP 96350, 1996.
Braun K A, Van der Borg N J C M, Dassen A G M, et al. Noise reduction by using serrated trailing edges[C]//European wind energy conference, Germany. Dublin, 1997.
Oerlemans S, Fisher M, Maeder T, et al. Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations[J]. AIAA Journal, 2009, 47(6):1470-1481.
doi:
10.2514/1.38888
Gruber M. Airfoil noise reduction by edge treatments[D]. University of Southampton, 2012.
http://www.mendeley.com/catalog/airfoil-noise-reduction-edge-treatments/
Gruber M, Azarpeyvand M, Joseph P F. Airfoil trailing edge noise reduction by the introduction of sawtooth and slitted trailing edge geometries[C]//Proceedings of 20th International Congress on Acoustics. Sydney, 2010: 23-27.
Gruber M, Joseph P F, Chong T P. Experimental investigation of airfoil self noise and turbulent wake reduction by the use of trailing edge serrations[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2010-3803.
Gruber M, Joseph P, Chong T. On the mechanisms of serrated airfoil trailing edge noise reduction[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2011-2781.
Gruber M, Joseph P F, Azarpeyvand M. An experimental investigation of novel trailing edge geometries on airfoil trailing edge noise reduction[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2013-2011.
Chong T P, Joseph P, Gruber M. An experimental study of airfoil instability noise with trailing edge serrations[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2010-3723.
Chong T P, Joseph F, Gruber M. On the airfoil self-noise reduction by trailing edge serrations of non-insertion type[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2012-2185.
Chong T P, Vathylakis A, Joseph P, et al. On the noise and wake flow of an airfoil with broken and serrated trailing edges[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2011-2860.
Chong T P, Joseph P F. An experimental study of airfoil instability tonal noise with trailing edge serrations[J]. Journal of Sound & Vibration, 2013, 332(24):6335-6358.
http://www.sciencedirect.com/science/article/pii/S0022460X13005956
Chong T P, Joseph P F, Gruber M. Airfoil self noise reduction by non-flat plate type trailing edge serrations[J]. Applied Acoustics, 2013, 74(4):607-613.
doi:
10.1016/j.apacoust.2012.11.003
Chong T P, Vathylakis A. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge[J]. Journal of Sound & Vibration, 2015, 354(10):65-90.
http://www.sciencedirect.com/science/article/pii/S0022460X15004307
Moreau D J, Brooks L A, Doolan C J. On the noise reduction mechanism of a plate serrated trailing edge at low-to-moderate Reynolds number[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2012-2186.
Moreau D J, Doolan C J. Tonal noise from trailing edge serrations at low reynolds number[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2013-2010.
Arina R, Rinaldi R D R, Iob A. Numerical study of self-nosie produced by an airfoil with trailing edge serrations[C]//18th AIAA/CEAS Aeroacoustics Conference. AIAA 2012-2184.
Jones L E, Sandberg R D. Numerical investigation of airfoil self-noise reduction by addition of trailing-edge serrations[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2010-3703.
Jones L E, Sandberg R D. Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations[J]. Journal of Fluid Mechanics, 2012, 706(43):295-322.
http://adsabs.harvard.edu/abs/2012JFM...706..295J
Finez A, Jondeau E, Roger M, et al. Broadband noise reduction of a linear cascade with trailing edge serrations[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2011-2874.
Weckmüller C, Guerin S. On the influence of trailing-edge serrations on open-rotor tonal noise[C]//18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO. AIAA2012-2124.
Jaron R, Moreau A, Guerin S, et al. Optimization of trailing-edge serrations to reduce open-rotor tonal interaction noise[C]//Proceeding of the ISROMAC, 2016.
Vathylakis A, Chong T P. On the turbulent boundary layers developed on flat plate with a serrated trailing edge[C]//19th AIAA/CEAS Aeroacoustics Conference. AIAA 2013-2107.
León C A, Ragni D, Pröbsting S, et al. Flow topology and acoustic emissions of trailing edge serrations at incidence[J]. Experiments in Fluids, 2016, 57(5):1-17.
doi:
10.1007/s00348-016-2181-1
Leon C A, Avallone F, Pröbsting S, et al. PIV investigation of the flow past solid and slitted sawtooth serrated trailing edges[C]//AIAA Aerospace Sciences Meeting, AIAA Scitech, 2016.
Avallone F, Pröbsting S, Ragni D. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise[J]. Physics of Fluids, 2016, 28(117101):3818-3831.
http://adsabs.harvard.edu/abs/2016PhFl...28k7101A
Lyu B, Azarpeyvand M, Sinayoko S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2015, 793:556-588.
http://www.mysciencework.com/publication/show/prediction-noise-from-serrated-trailing-edges-ccaadd21
Huang X. Theoretical model of acoustic scattering from a flat plate with serrations[J]. Journal of Fluid Mechanics, 2017, 819:228-257.
doi:
10.1017/jfm.2017.176
陈坤. 三种鸮形态学、飞行运动学特征规律及其仿生研究[D]. 吉林大学, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10183-1012365885.htm
Chen K. Morphology, flight kinematics and bionics of silent flight owl[D]. Jilin University, 2012. (in Chinese)
http://cdmd.cnki.com.cn/Article/CDMD-10183-1012365885.htm
孙少明, 任露泉, 徐成宇.长耳鸮皮肤和覆羽耦合吸声降噪特性研究[J].噪声与振动控制, 2008, (3):119-123.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zszk200803034&dbname=CJFD&dbcode=CJFQ
Sun S M, Ren L Q, Xu C Y. Research on coupling sound absorption property of owl skin and feather[J]. Noise and Vibration Control, 2008, (3):119-123. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zszk200803034&dbname=CJFD&dbcode=CJFQ
纪良, 乔渭阳, 王良峰, 等.普通室内机翼尾缘噪声降噪的实验研究[J].推进技术, 2015, (5):703-712.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201505009&dbname=CJFD&dbcode=CJFQ
Ji L, Qiao W Y, Wang L F, et al. Experimental investigation of airfoil trailing-edge noise reduction in a normal indoor test bed[J]. Journal of Propulsion Technology, 2015, (5):703-712. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201505009&dbname=CJFD&dbcode=CJFQ
Qiao W Y, Ji L, Xu K B, et al. An Investigation on the near-field turbulence and radiated sound for an airfoil with trailing edge serrations[C]//19th AIAA/CEAS Aeroacoustics Conference. AIAA 2013-2112.
Ji L, Qiao W Y, Tong F, et al. Experimental and numerical study on noise reduction mechanisms of the airfoil with serrated trailing edge[C]//20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia. AIAA 2014-3297.
Qiao W Y, Ji L, Tong F, et al. Experimental and numerical study on noise reduction mechanisms of the linear cascade with serrated trailing edge[C]//20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia. AIAA 2014-3349.
仝帆, 乔渭阳, 王良锋, 等.仿生学翼型尾缘锯齿降噪机理[J].航空学报, 2015, (9):2911-2922.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201509015&dbname=CJFD&dbcode=CJFQ
Tong F, Qiao W Y, Wang L F, et al. Noise reduction mechanism of bionic airfoil trailing edge serrations[J]. Acta Aeronautica et Astronautica Sinica, 2015, (9):2911-2922. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201509015&dbname=CJFD&dbcode=CJFQ
仝帆, 乔渭阳, 纪良, 等.尾缘锯齿降低叶栅噪声的数值模拟[J].航空动力学报, 2016, (4):894-902.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201604018&dbname=CJFD&dbcode=CJFQ
Tong F, Qiao W Y, Wang L F, et al. Numerical study of fan turbulence broadband noise's characteristics[J]. Journal of Aerospace Power, 2016, (4):894-902. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201604018&dbname=CJFD&dbcode=CJFQ
Tong F, Qiao W Y, Ji L, et al. Experimental study on the turbomachinery trailing edge noise reduction[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea. GT 2016-56453.
Tong F, Wang X N, Wang L F, et al. Experimental study on airfoil noise reduction with trailing edge serrations under various incoming flow conditions[C]//Proceedings of the 3nd Symposium on Fluid-Structure-Sound Interactions and Control. Perth, Western Australia, 2015, A027.
陈伟杰, 乔渭阳, 仝帆, 等.尾缘锯齿结构对叶片边界层不稳定噪声的影响[J].航空学报, 2016, (11):3317-3327
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201611010&dbname=CJFD&dbcode=CJFQ
Chen W J, Qiao W Y, Tong F, et al. Blade boundary layer instability noise with trailing edge serrations[J]. Acta Aeronautica et Astronautica Sinica, 2016, (11):3317-3327. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201611010&dbname=CJFD&dbcode=CJFQ
刘小民, 汤虎, 王星, 等.苍鹰翼尾缘结构的单元仿生叶片降噪机理研究[J].西安交通大学学报, 2012, 46(1):35-41.
doi:
10.7652/xjtuxb201201007
Liu X M, Tang H, Wang X, et al. Noise reduction mechanism of bionic coupling blade based on the trailing edge of Goshawk wing[J]. Journal of Xi'an Jiaotong University, 2012, 46(1):35-41. (in Chinese)
doi:
10.7652/xjtuxb201201007
宫武旗, 王芳, 田镇龙, 等.叶片锯齿尾缘对降低空调室外机气动噪声影响的试验研究[J].工程热物理学报, 2011, 32(10):1681-1684.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb201110016&dbname=CJFD&dbcode=CJFQ
Gong W Q, Wang F, Tian Z L, et al. Experimental study of the effect of serrated blade trailing edge on axial fan noise reduction in an outdoor air conditioner[J]. Journal of Engineering Thermophysics, 2011, 32(10):1681-1684. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb201110016&dbname=CJFD&dbcode=CJFQ
黄乾. 基于大涡模拟的锯齿尾缘翼型流动分析及气动噪声预测[D]. 北京: 清华大学, 2015.
http://cdmd.cnki.com.cn/Article/CDMD-10003-1016713106.htm
Huang Q. A numerical study of the flow around airfoils with serrated trailing edges and aerodynamic noise based on large eddy simulation[D]. Beijing: Tsinghua University, 2015.
http://cdmd.cnki.com.cn/Article/CDMD-10003-1016713106.htm
许影博, 李晓东.锯齿型翼型尾缘噪声控制实验研究[J].空气动力学学报, 2012, 30(1):120-124.
http://www.kqdlxxb.com/CN/abstract/abstract10858.shtml
Xu Y B, Li X D. An experiment study of the serrated trailing edge noise[J]. Acta Aerodynamica Sinica, 2012, 30(1):120-124. (in Chinese)
http://www.kqdlxxb.com/CN/abstract/abstract10858.shtml
郭晋之, 欧阳华, 田杰, 等.锯齿形尾缘喷嘴气动声学实验及数值分析[J].噪声与振动控制, 2013, 33(5):204-209.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zszk201305044&dbname=CJFD&dbcode=CJFQ
Guo J Z, Ou-yang H, Tian J, et al. Analysis of aerodynamic acoustic characteristics of chevron nozzles[J]. Noise and Vibration Control, 2013, 33(5):204-209. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zszk201305044&dbname=CJFD&dbcode=CJFQ
郭晋之. 锯齿形尾缘喷嘴射流增混与降噪机理研究[D]. 上海交通大学, 2013.
http://cdmd.cnki.com.cn/Article/CDMD-10248-1013021377.htm
Guo J Z. Investigation on mixing enhancement and noise reduction mechanism of chevron nozzle[D]. Shanghai Jiao Tong University, 2013. (in Chinese)
http://cdmd.cnki.com.cn/Article/CDMD-10248-1013021377.htm
Avallone F, Velden W C P V D, Ragni D. Benefits of curved serrations on broadband trailing-edge noise reduction[J]. Journal of Sound & Vibration, 2017, 400:167-177.
http://www.sciencedirect.com/science/article/pii/S0022460X17303140
Clark I, Alexander W N, Devenport W J, et al. Bio-inspired trailing edge noise control[C]//21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX. AIAA 2015-2365.
Clark I, Devenport W J, Jaworski J, et al. The noise generating and suppressing characteristics of bio-inspired rough surfaces[C]//20th AIAA/CEAS Aeroacoustics Conference. AIAA 2014-2911.
Fish F E, Battle J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225:51-60.
doi:
10.1002/(ISSN)1097-4687
Miklosovic D S, Murray M M, Howle L E. Experimental evaluation of sinusoidal leading edges[J]. Journal of Aircraft, 2007, 44(4):1404-1408.
doi:
10.2514/1.30303
Van Nierop E A, Alben S, Brenner M. How bumps on whale flippers delay stall:an aerodynamic model[J]. Physical Review Letters, 2008, 100(5):1-4.
http://europepmc.org/abstract/MED/18851264
Yoon H S, Hung P A, Jung J H, et al. Effect of the wavy leading edge on hydrodynamic characteristics for flow around low aspect ratio wing[J]. Computers & Fluids, 2011, 49(1):276-289.
http://www.sciencedirect.com/science/article/pii/S0045793011001988
Zhang X, Zhou C, Tao Z, et al. Numerical study on effect of leading-edge tubercles[J]. Aircraft Engineering & Aerospace Technology, 2013, 85(4):247-257.
http://www.ingentaconnect.com/content/mcb/127/2013/00000085/00000004/art00001?crawler=true
Corsini A, Delibra G, Sheard A G. The application of sinusoidal blade-leading edges in a fan-design methodology to improve stall resistance[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 2013, 228(3):255-271.
doi:
10.1177/0957650913514229
Collins F G. Boundary-layer control on wings using sound and leading-edge serrations[J]. AIAA Journal, 1981, 19(2):129-130.
doi:
10.2514/3.50930
Miklosovic D S, Murray M M, Howle L E, et al. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers[J]. Physics of Fluids, 2004, 16(5):L39-L42.
doi:
10.1063/1.1688341
Johari H, Henoch C W, Custodio D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11):2634-2642.
doi:
10.2514/1.28497
Hansen K L, Kelso R M, Dally B B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1):185-194.
doi:
10.2514/1.J050631
Shinichiro I T O. Aerodynamic influence of leading-edges serrationos on an airfoil in a low Reynoldys number[J]. Journal of Biomechnical Science and Engineering, 2009, 4(1):117-123.
doi:
10.1299/jbse.4.117
Cranston B, Laux C, Altman A. Leading edge serrations on flat plates at low reynolds number[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA 2012-0053.
Yoon H S, Hung P A, Jung J H, et al. Effect of the wavy leading edge on hydrodynamic characteristics for flow around low aspect ratio wing[J]. Computers & Fluids, 2011, 49(1):276-289.
http://www.sciencedirect.com/science/article/pii/S0045793011001988
Weber P W, Howle L E, Murray M M, et al. Computational evaluation of the performance of lifting surfaces with leading-edge protuberances[J]. Journal of Aircraft, 2011, 48(2):591-600.
doi:
10.2514/1.C031163
Favier J, Pinelli A, Piomelli U. Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers[J]. Comptes rendus-Mécanique, 2011, 340(1):107-114.
http://www.sciencedirect.com/science/article/pii/S1631072111001902
Zhang M M, Wang G F, Xu J Z. Aerodynamic control of low-reynolds-number airfoil with leading-edge protuberances[J]. AIAA Journal, 2013, 51(8):1960-1971.
doi:
10.2514/1.J052319
Natarajan K, Sudhakar S, Paulpandian S. Experimental studies on the effect of leading edge tubercles on laminar separation bubble[C]//Aerospace Sciences Meeting. AIAA 2014-1279.
Hansen K, Kelso R, Doolan C. Reduction of flow induced tonal noise through leading edge tubercle modifications[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2010-3700.
Polacsek C, Reboul G, Clair V, et al. Turbulence-airfoil interaction noise reduction using wavy leading edge: An experimental and numerical study[C]//Inter-Noise and Noise-Con Congress and Conference, 2011.
Gruber M, Joseph P, Polacsek C, et al. Noise reduction using combined trailing edge and leading edge serrations in a tandem airfoil experiment[C]//18th AIAA/CEAS Aeroacoustics Conference, 2012.
Clair V, Polacsek C, Garrec T L, et al. Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges[J]. AIAA Journal, 2013, 51(51):2695-2713.
http://adsabs.harvard.edu/abs/2013AIAAJ..51.2695C
Narayanan S, Joseph P, Haeri S, et al. Noise reduction studies from the leading edge of serrated flat plates[C]//20th AIAA/CEAS Aeroacoustics Conference, 2014.
Narayanan S, Chaitanya P, Haeri S, et al. Airfoil noise reductions through leading edge serrations[J]. Physics of Fluids, 2015, 27(2):1-17.
http://adsabs.harvard.edu/abs/2015PhFl...27b5109N
Chaitanya P, Narayanan S, Joseph P, et al. Leading edge serration geometries for significantly enhanced leading edge noise reductions[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2016-2736.
Haeri S, Kim J W, Narayanan S, et al. 3D calculations of aerofoil-turbulence interaction noise and the effect of wavy leading edges[C]//20th AIAA/CEAS Aeroacoustics Conference, 2014.
Turner J M, Wook K J. Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances[J]. Journal of Fluid Mechanics, 2016, 811:582-611.
http://adsabs.harvard.edu/abs/2017JFM...811..582T
Kim J W, Haeri S, Joseph P F. On the reduction of aerofoil-turbulence interaction noise associated with wavy leading edges[J]. Journal of Fluid Mechanics, 2016, 792:526-552.
doi:
10.1017/jfm.2016.95
Aguilera F G, Gill J R, Angland D, et al. Wavy leading edge airfoils interacting with anisotropic turbulence[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2017-3370.
Mathews J, Peake N. Noise generation by turbulence interacting with an aerofoil with a serrated leading edge[C]//21st AIAA/CEAS Aeroacoustics Conference. Dallas, AIAA 2015-2204.
Lyu B, Azarpeyvand M, Sinayoko S. Noise prediction for serrated leading-edges[C]//22nd AIAA/CEAS Aeroacoustics Conference. Lyon, France, AIAA 2016-2740.
Chen W, Qiao W, Wang X, et al. An experimental and numerical investigation of airfoil instability noise with leading edge serrations[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2016-2956.
Mascha E. Uber die Schwungfedern[J]. Zeitschrift Fur Wissenschaftliche Zoologie, 1904, 77:606-651. (in German
https://www.hanspub.org/journal/PaperInformation.aspx?paperID=16390
Graham R R. The silent flight of owls[J]. Journal of the Royal Aeronautical Society, 1934, 38(286):837-843.
doi:
10.1017/S0368393100109915
Thorpe W H, Griffin D R. The lack of ultrasonic components in the flight noise of owls compared with other birds[J]. Ibis, 1962, 104(2):256-257.
doi:
10.1111/j.1474-919X.1962.tb08654.x/full
Kroeger R, Grushka H D, Helvey T C. Low speed aerodynamics for ultra-quiet flight[J]. University of Tennessee Space Institute, 1972. doi:10. 1016/0022-460X(71)90105-2.
Gruschka H D, Borchers I U, Coble J G. Aerodynamic noise produced by a gliding owl[J]. Nature, 1971, 233(5319):409-411.
doi:
10.1038/233409a0
Neuhaus W, Bretting H, Schweizer B. Morphologische und funktionelle Untersuchungen uber den 'lautlosen' Flug der Eulen (Strix aluco) im Vergleich zum Flug der Enten (Anas platyrhynchos)[J]. Biologisches Zentralblatt, 1973, 92:495-51. (in German
https://www.scientific.net/AMM.461.297
Geyer T, Sarradj E, Fritzsche C. Silent owl flight: experiments in the aeroacoustic wind tunnel[C]//Fortschritte der Akustik-NAG/DAGA, 2009.
Sarradj E, Fritzsche C, Geyer T. Silent owl flight:bird flyover noise measurements[J]. AIAA Journal, 2011, 49(4):769-779.
doi:
10.2514/1.J050703
Bachmann T, Klän S, Baumgartner W, et al. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia[J]. Frontiers in Zoology, 2007, 4(1):1-15.
doi:
10.1186/1742-9994-4-1
孔德义, 梁爱萍, 褚金奎, 等.猫头鹰的静音飞行机理研究[J].应用物理, 2015, 5(11):137-146.
http://www.oalib.com/paper/5265549
Kong D Y, Liang A P, Chu J K, et al. Study on mechanism of silent flight of owls[J]. Applied Physics, 2015, 5(11):137-146. (in Chinese)
http://www.oalib.com/paper/5265549
Lilley G M. A study of the silent flight of the owl[C]//4th AIAA/CEAS aeroacoustics conference. AIAA 1998-2340.
Brooks T F, Hodgson T H. Trailing edge noise prediction from measured surface pressures[J]. Journal of Sound & Vibration, 1981, 78(1):69-117.
http://www.sciencedirect.com/science/article/pii/S0022460X81801587
Ryi J, Choi J S. Noise reduction effect of airfoil and small-scale rotor using serration trailing edge in a wind tunnel test[J]. Science China Technological Sciences, 2017, B37:1-8.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jexg201702016&dbname=CJFD&dbcode=CJFQ
Fischer A, Bertagnolio F, Shen W Z, et al. Noise model for serrated trailing edges compared to wind tunnel measurements[J]. Journal of Physics:Conference Series, 2016, 753:022053.
doi:
10.1088/1742-6596/753/2/022053
[100]
Hersh A S, Hayden R E. Aerodynamic sound radiation from lifting surfaces with and without leading edge serrations[R]. Washington: National Aeronautics and Space Administration. NASA CR-114370, 1971.
[101]
Hersh A S, Sodermant P T, Hayden R E. Investigation of acoustic effects of leading-edge serrations on airfoils[J]. Journal of Aircraft, 1974, 11(4):197-202.
doi:
10.2514/3.59219
[102]
Arndt R E A, Nagel R T. Effect of leading edge serration on noise radiation from a model rotor[R]. AIAA 72-655, 1972.
[103]
Smith E G, Sowers H D. Cascade tests of serrated leading edge blading at high subsonic speeds[R]. NASA CR 2472, 1974.
[104]
Kopiev V, Zaitsev M, Belyaev I, et al. Noise reduction potential through slat hook serrations[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2011-2909.
[105]
Geyer T F, Wasala S H, Cater J E, et al. Experimental investigation of leading edge hook structures for wind turbine noise reduction[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2016-2954.
[106]
Chen W J, Wang X N, Qiao W Y, et al. Rod-airfoil interaction noise reduction using leading edge serrations[C]//21st AIAA/CEAS Aeroacoustics Conference. AIAA 2015-3264.
[107]
Longhouse R E. Vortex shedding noise of low tip speed, axial flow fans[J]. Journal of Sound & Vibration, 1977, 53(1):25-46.
http://www.sciencedirect.com/science/article/pii/0022460X7790092X
[108]
Lau A S H, Haeri S, Kim J W. The effect of wavy leading edges on aerofoil-gust interaction noise[C]//19th AIAA/CEAS Aeroacoustics Conference, 2013.
[109]
Lau A S H, Haeri S, Kim J W. The effect of wavy leading edges on aerofoil-gust interaction noise[J]. Journal of Sound & Vibration, 2013, 332(24):6234-6253.
http://www.sciencedirect.com/science/article/pii/S0022460X13005713
[110]
Chong T P, Vathylakis A, Mcewen A, et al. Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2015-2200.
[111]
Fish F E, Weber P W, Murray M M, et al. The tubercles on humpback whales' flippers:application of bio-inspired technology[J]. Integrative & Comparative Biology, 2011, 51(1):203-213.
http://www.ncbi.nlm.nih.gov/pubmed/21576119
[112]
Brooks T F, Pope D S, Marcolini M A. Airfoil self-noise and prediction[R]. NASA, 19890016302.
[113]
Mcalpine A, Nash E C, Lowson M V. On the generation of discrete frequency tones by the flow around an aerofoil[J]. Journal of Sound & Vibration, 1997, 222(5):753-779.
http://www.sciencedirect.com/science/article/pii/S0022460X98920855
[114]
Sandberg R D, Sandham N D, Joseph P F. Direct numerical simulations of trailing-edge noise generated by boundary-layer instabilities[J]. Journal of Sound & Vibration, 2007, 304(3-[WX)] [WX(4.5mm, 75.5mm] 5):677-690.
http://www.sciencedirect.com/science/article/pii/S0022460X07001733
[115]
Sandberg R D, Jones L E, Sandham N D, et al. Direct numerical simulations of tonal noise generated by laminar flow past airfoils[J]. Journal of Sound & Vibration, 2009, 320(4):838-858.
http://www.sciencedirect.com/science?_ob=ArticleURL&md5=9f5c0afb1ed06a7c5d4eb1f04ca5178a&_udi=B6WM3-4TN5MHX-1&_user=10&_coverDate=03%2F06%2F2009&_rdoc=10&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%236923%232009%239967
[116]
Kingan M J, Pearse J R. Laminar boundary layer instability noise produced by an aerofoil[J]. Journal of Sound & Vibration, 2009, 322(4-5):808-828.
http://www.sciencedirect.com/science/article/pii/S0022460X08009450
[117]
Jones L E, Sandberg R D. Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops[J]. Journal of Sound & Vibration, 2011, 330(25):6137-6152.
http://www.sciencedirect.com/science/article/pii/S0022460X11005621
[118]
Clair V, Polacsek C, Reboul G, et al. Numerical simulation of turbulence interaction noise applied to a serrated airfoil[C]//Proceedings of the Acoustics, 2012.
[119]
Roger M, Schram C, Santana L D. Reduction of airfoil turbulence-impingement noise by means of leading-edge serrations and/or porous material[C]//19th AIAA/CEAS Aeroacoustics Conference, 2013.
[120]
Turner J, Kim J W. Towards understanding aerofoils with wavy leading edges interacting with vortical disturbances[C]//AIAA/CEAS Aeroacoustics Conference. AIAA 2016-2952.
[121]
Lau A S H, Haeri S, Kim J W. The effect of wavy leading edges on aerofoil-gust interaction noise[J]. Journal of Sound & Vibration, 2013, 332(24):6234-6253.
http://www.sciencedirect.com/science/article/pii/S0022460X13005713
[122]
Chen W J, Qiao W Y, Tong F, et al. Experimental investigation of wavy leading edges on rod-airfoil interaction noise, Journal of Sound and Vibration. (in press)