• 1 清华大学心理学系, 北京 100084
    2 Neuroimaging Center, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
    3 Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands
    4 Department of Psychological Methods, University of Amsterdam, 1018 VZ Amsterdam, The Netherlands
    5 Centrum Wiskunde & Informatica, 1090 GB Amsterdam, The Netherlands
  • 1 Department of Psychology, School of Social Science, Tsinghua University, Beijing 100084, China
    2 Neuroimaging Center, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
    3 Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands
    4 Department of Psychological Methods, University of Amsterdam, 1018 VZ Amsterdam, The Netherlands
    5 Centrum Wiskunde & Informatica, 1090 GB Amsterdam, The Netherlands
  • 摘要:

    统计推断在科学研究中起到关键作用, 然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test, NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或)补充的统计方法。贝叶斯因子是贝叶斯统计中用来进行模型比较和假设检验的重要方法, 其可以解读为对零假设 H 0 或者备择假设 H 1 的支持程度。其与NHST相比有如下优势:同时考虑 H 0 H 1 并可以用来支持 H 0 、不“严重”地倾向于反对 H 0 、可以监控证据强度的变化以及不受抽样计划的影响。目前, 贝叶斯因子能够很便捷地通过开放的统计软件JASP实现, 本文以贝叶斯 t 检验进行示范。贝叶斯因子的使用对心理学研究者来说具有重要的意义, 但使用时需要注意先验分布选择的合理性以及保持数据分析过程的透明与公开。

    Abstract:

    Statistical inference plays a critical role in modern scientific research, however, the dominant method for statistical inference in science, null hypothesis significance testing (NHST), is often misunderstood and misused, which leads to unreproducible findings. To address this issue, researchers propose to adopt the Bayes factor as an alternative to NHST. The Bayes factor is a principled Bayesian tool for model selection and hypothesis testing, and can be interpreted as the strength for both the null hypothesis H 0 and the alternative hypothesis H 1 based on the current data. Compared to NHST, the Bayes factor has the following advantages: it quantifies the evidence that the data provide for both the H 0 and the H 1 , it is not “violently biased” against H 0 , it allows one to monitor the evidence as the data accumulate, and it does not depend on sampling plans. Importantly, the recently developed open software JASP makes the calculation of Bayes factor accessible for most researchers in psychology, as we demonstrated for the t -test. Given these advantages, adopting the Bayes factor will improve psychological researchers’ statistical inferences. Nevertheless, to make the analysis more reproducible, researchers should keep their data analysis transparent and open.

    Key words: Bayes factor, Bayesian statistics, Frequentist, NHST,

    胡传鹏, 孔祥祯, Eric-Jan Wagenmakers, Alexander Ly, 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展 , 26(6), 951-965.

    HU Chuan-Peng, KONG Xiang-Zhen, Eric-Jan WAGENMAKERS, Alexander LY, PENG Kaiping. (2018). The Bayes factor and its implementation in JASP: A practical primer. Advances in Psychological Science, 26(6), 951-965.

    Bahadur,R. R., &Bickel, P. J . ( 2009). An optimality property of Bayes' test statistics. Lecture Notes-Monograph Series, 57, 18-30. doi: 10.2307/30250033 Baker, M.(2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452-454. doi: 10.1038/533452a pmid: 27225100 Begley,C. G., & Ellis, L. M . ( 2012). Drug development: Raise standards for preclinical cancer research. Nature, 483( 7391), 531-533. doi: 10.1038/483531a Bem,D. J . ( 2011). Feeling the future: Experimental evidence for anomalous retroactive influences on cognition and affect. Journal of Personality and Social Psychology, 100( 3), 407-425. doi: 10.1037/a0021524 pmid: 21280961 Bem D. J., Utts J., & Johnson W. O . ( 2011). Must psychologists change the way they analyze their data? Journal of Personality and Social Psychology, 101( 4), 716-719. doi: 10.1037/a0024777 pmid: 21928916 Benjamin D. J., Berger J. O., Johannesson M., Nosek B. A., Wagenmakers E.-J., Berk R., … Johnson V. E . ( 2018). Redefine statistical significance. Nature Human Behaviour, 2( 1), 6-10. doi: 10.1038/s41562-017-0189-z Berger,J. O., & Berry, D. A . ( 1988). Statistical analysis and the illusion of objectivity. American Scientist, 76( 2), 159-165. doi: 10.1016/S0730-725X(97)00243-9 Berger,J. O., & Delampady, M.(1987). Testing precise hypotheses. Statistical Science, 2( 3), 317-335. doi: 10.1214/ss/1177013238 Berger,J. O., & Wolpert, R. L . ( 1988). The likelihood principle (2nd ed.). Hayward (CA): Institute of Mathematical Statistics. Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M., … Riddell A . ( 2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76( 1), 1-32. doi: 10.18637/jss.v076.i01 Chambers C. D., Feredoes E., Muthukumaraswamy S. D., & Etchells P. J . ( 2014). Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience , 1( 1), 4-17. Chen X., Lu B., & Yan C.-G . ( 2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Human Brain Mapping, 39( 1), 300-318. doi: 10.1002/hbm.23843 pmid: 29024299 Cumming, G.(2014). The new statistics: Why and how. Psychological Science, 25( 1), 7-29. doi: 10.1177/0956797613504966 Depaoli, S.,& van de Schoot, R.(2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22( 2), 240-261. doi: 10.1037/met0000065 pmid: 26690773 Dienes, Z.(2008). Understanding psychology as a science: An introduction to scientific and statistical inference . London, UK: Palgrave Macmillan. Dienes, Z.(2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6( 3), 274-290. doi: 10.1177/1745691611406920 pmid: 26168518 Dienes, Z.(2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781. doi: 10.3389/fpsyg.2014.00781 pmid: 4114196 Ebersole C. R., Atherton O. E., Belanger A. L., Skulborstad H. M., Allen J. M., Banks J. B., .. Nosek B. A . ( 2016). Many Labs 3: Evaluating participant pool quality across the academic semester via replication. Journal of Experimental Social Psychology, 67, 68-82. doi: 10.1016/j.jesp.2015.10.012 Edwards, W.(1965). Tactical note on the relation between scientific and statistical hypotheses. Psychological Bulletin, 63( 6), 400-402. doi: 10.1037/h0021967 pmid: 14314074 Edwards W., Lindman H., & Savage L. J . ( 1963). Bayesian statistical inference for psychological research. Psychological Review, 70( 3), 193-242. doi: 10.1037/h0044139 Etz A .(in press). Introduction to the concept of likelihood and its applications. Advances in Methods and Practices in Psychological Science . doi: 10.1177/2515245917744314 Francis, G.(2013). Replication, statistical consistency, and publication bias. Journal of Mathematical Psychology, 57( 5), 153-169. doi: 10.1016/j.jmp.2013.02.003 Gallistel,C. R . ( 2009). The importance of proving the null. Psychological Review, 116( 2), 439-453. doi: 10.1037/a0015251 pmid: 2859953 Gigerenzer, G.(2004). Mindless statistics. The Journal of Socio-Economics, 33( 5), 587-606. doi: 10.1016/j.socec.2004.09.033 Greenland S., Senn S. J., Rothman K. J., Carlin J. B., Poole C., Goodman S. N., … Altman D. G . ( 2016). Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. European Journal of Epidemiology , 31( 4), 337-350. doi: 10.1007/s10654-016-0149-3 Gronau,Q. F., & Wagenmakers, E.-J.(2017). Bayesian evidence accumulation in experimental mathematics: A case study of four irrational numbers. Experimental Mathematics, 1-10. doi: 10.1080/10586458.2016.1256006 Halsey L. G., Curran-Everett D., Vowler S. L., & Drummond G. B . ( 2015). The fickle P value generates irreproducible results. Nature Methods, 12( 3), 179-185. doi: 10.1038/nmeth.3288 pmid: 25719825 Hoijtink, H.(2011). Informative hypotheses: Theory and practice for behavioral and social scientists . Boca Raton, FL: Chapman & Hall/CRC. Hoijtink H., van Kooten P., & Hulsker K . ( 2016). Why Bayesian psychologists should change the way they use the Bayes factor. Multivariate Behavioral Research, 51( 1), 2-10. doi: 10.1080/00273171.2014.969364 pmid: 26881951 JASP Team. ( 2017). JASP (Version 0.8.2) [Computer software]. Jeffreys, H.(1935). Some tests of significance, treated by the theory of probability. Mathematical Proceedings of the Cambridge Philosophical Society, 31( 2), 203-222. doi: 10.1017/S030500410001330X Jeffreys, H.(1938). Significance tests when several degrees of freedom arise simultaneously. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 165( 921), 161-198. doi: 10.1098/rspa.1938.0052 Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press. Johnson,V. E . ( 2013). Revised standards for statistical evidence. Proceedings of the National Academy of Sciences of the United States of America, 110( 48), 19313-19317. doi: 10.1073/pnas.1313476110 Kerr,N. L . ( 1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2( 3), 196-217. doi: 10.1207/s15327957pspr0203_4 pmid: 15647155 Klein R. A., Ratliff K. A., Vianello M., Adams R. B., Jr., Bahník Š., Bernstein M. J., … Nosek B. A . ( 2014). Investigating variation in replicability: A “many labs” replication project. Social Psychology, 45( 3), 142-152. doi: 10.1027/1864-9335/a000178 Klugkist I., Laudy O., & Hoijtink H . ( 2005). Inequality constrained analysis of variance: A Bayesian approach. Psychological Methods, 10( 4), 477-493. doi: 10.1037/1082-989X.10.4.477 pmid: 16393001 Kruschke J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and stan (2nd ed.). San Diego, CA: Academic Press/Elsevier. Kruschke,J. K., & Liddell, T. M . ( 2017a). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 1-23. doi: 10.3758/s13423-017-1272-1 pmid: 28405907 Kruschke,J. K., & Liddell, T. M . ( 2017 b). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 1-29. Lakens, D.(2017). Equivalence tests: A practical primer for t-Tests, correlations, and meta-analyses. Social Psychological and Personality Science, 8( 4), 355-362. doi: 10.1177/1948550617697177 Lindley,D. V . ( 1993). The analysis of experimental data: The appreciation of tea and wine. Teaching Statistics, 15( 1), 22-25. doi: 10.1111/j.1467-9639.1993.tb00252.x Lindsay,D. S . ( 2015). Replication in psychological science. Psychological Science, 26( 12), 1827-1832. doi: 10.1177/0956797615616374 Lunn D., Spiegelhalter D., Thomas A., & Best N . ( 2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28( 25), 3049-3067. doi: 10.1002/sim.3680 pmid: 19630097 Ly A., Etz A., Marsman M., & Wagenmakers E.-J . ( 2017). Replication Bayes factors from evidence updating. PsyArXiv . Retrieved from Ly A., Marsman M., & Wagenmakers E.-J . ( 2018). Analytic posteriors for Pearson’s correlation coefficient. Statistica Neerlandica, 72, 4-13. doi: 10.1111/stan.12111 Ly A., Verhagen J., & Wagenmakers E.-J . (2016a). An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72, 43-55. doi: 10.1016/j.jmp.2016.01.003 Ly A., Verhagen J., & Wagenmakers E.-J . (2016b). Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19-32. doi: 10.1016/j.jmp.2015.06.004 Marsman, M.,& Wagenmakers, E.-J.(2017 a). Bayesian benefits with JASP. European Journal of Developmental Psychology, 14( 5), 545-555. doi: 10.1080/17405629.2016.1259614 Marsman, M.,& Wagenmakers, E.-J.(2017 b). Three insights from a bayesian interpretation of the one-sided P value. Educational and Psychological Measurement , 77( 3), 529-539. doi: 10.1177/0013164416669201 Masson,M. E. J . ( 2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43( 3), 679-690. doi: 10.3758/s13428-010-0049-5 pmid: 21302025 Matzke D., Nieuwenhuis S., van Rijn H., Slagter H. A., van der Molen, M. W., & Wagenmakers E.-J . ( 2015). The effect of horizontal eye movements on free recall: A preregistered adversarial collaboration. Journal of Experimental Psychology: General, 144( 1), e1-e15. doi: 10.1037/xge0000038 pmid: 25621378 Miller, G.(2011). ESP paper rekindles discussion about statistics. Science, 331( 6015), 272-273. doi: 10.1126/science.331.6015.272 pmid: 21252321 Morey R. D., Hoekstra R., Rouder J. N., Lee M. D., & Wagenmakers E.-J . ( 2016). The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review, 23( 1), 103-123. doi: 10.3758/s13423-015-0947-8 pmid: 26450628 Morey,R. D., & Rouder, J. N . ( 2011). Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16( 4), 406-419. doi: 10.1037/a0024377 pmid: 21787084 Mulder J., Klugkist I., van de Schoot R., Meeus W. H. J., Selfhout M., & Hoijtink H . ( 2009). Bayesian model selection of informative hypotheses for repeated measurements. Journal of Mathematical Psychology, 53( 6), 530-546. doi: 10.1016/j.jmp.2009.09.003 Munafò M. R., Nosek B. A., Bishop D. V. M., Button K. S., Chambers C. D., Percie du Sert N., … Ioannidis, J. P. A.(2017). A manifesto for reproducible science. Nature Human Behaviour, 1( 1), 0021. doi: 10.1038/s41562-016-0021 Nosek B. A., Alter G., Banks G. C., Borsboom D., Bowman S. D., Breckler S. J., … Yarkoni T . ( 2015). Promoting an open research culture. Science, 348( 6242), 1422-1425. doi: 10.1126/science.aab2374 Nosek B. A., Spies J. R., & Motyl M . ( 2012). Scientific Utopia: II. Restructuring incentives and practices to promote truth over publishability. Perspectives on Psychological Science, 7( 6), 615-631. doi: 10.1177/1745691612459058 Open Science Collaboration. ( 2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. Plummer, M.(2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling . Paper presented at the Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Poldrack R. A., Baker C. I., Durnez J., Gorgolewski K. J., Matthews P. M., Munafò M. R., … Yarkoni T . ( 2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18( 2), 115-126. doi: 10.1038/nrn.2016.167 pmid: 28053326 Poldrack,R. A., & Gorgolewski, K. J . ( 2017). OpenfMRI: Open sharing of task fMRI data. NeuroImage, 144, 259-261. doi: 10.1016/j.neuroimage.2015.05.073 pmid: 4669234 Rouder,J. N . ( 2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21( 2), 301-308. doi: 10.3758/s13423-014-0595-4 pmid: 24659049 Rouder,J. N., & Morey, R. D . ( 2011). A Bayes factor meta-analysis of Bem’s ESP claim. Psychonomic Bulletin & Review, 18( 4), 682-689. doi: 10.3758/s13423-011-0088-7 pmid: 21573926 Rouder J. N., Morey R. D., Speckman P. L., & Province J. M . ( 2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56( 5), 356-374. doi: 10.1016/j.jmp.2012.08.001 Rouder J. N., Morey R. D., Verhagen J., Swagman A. R., & Wagenmakers E.-J . ( 2017). Bayesian analysis of factorial designs. Psychological Methods, 22( 2), 304-321. doi: 10.1037/met0000057 pmid: 27280448 Rouder J. N., Speckman P. L., Sun D. C., Morey R. D., & Iverson G . ( 2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review , 16( 2), 225-237. Salsburg, D.(2001). The lady tasting tea: How statistics revolutionized science in the twentieth century . New York, NY: W. H. Freeman and Company. Salvatier J., Wiecki T. V., & Fonnesbeck C . ( 2016). Probabilistic programming in Python using PyMC3. Peer J Computer Science, 2, e55. doi: 10.7717/peerj-cs.55 Schervish,M. J . ( 1996). P values: What they are and what they are not. The American Statistician, 50( 3), 203-206. doi: 10.2307/2684655 Schlaifer, R.,& Raiffa, H.(1961). Applied statistical decision theory. Boston: Harvard University. Schönbrodt F. D., Wagenmakers E.-J., Zehetleitner M., & Perugini M . ( 2017). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods, 22( 2), 322-339. doi: 10.1037/met0000061 pmid: 26651986 Scott,J. G., & Berger, J. O . ( 2006). An exploration of aspects of Bayesian multiple testing. Journal of Statistical Planning and Inference, 136( 7), 2144-2162. doi: 10.1016/j.jspi.2005.08.031 Scott,J. G., & Berger, J. O . ( 2010). Bayes and empirical- Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statististics, 38( 5), 2587-2619. doi: 10.1214/10-AOS792 Sellke T., Bayarri M. J., & Berger J. O . ( 2001). Calibration of ρ values for testing precise null hypotheses. The American Statistician , 55( 1), 62-71. doi: 10.1198/000313001300339950 Stephens, M.,& Balding, D. J . ( 2009). Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10( 10), 681-690. doi: 10.1038/nrg2615 pmid: 1976315119763151 Stulp G., Buunk A. P., Verhulst S., & Pollet T. V . ( 2013). Tall claims? Sense and nonsense about the importance of height of US presidents. The Leadership Quarterly, 24( 1), 159-171. doi: 10.1016/j.leaqua.2012.09.002 Topolinski, S.,& Sparenberg, P.(2012). Turning the hands of time. Social Psychological and Personality Science, 3( 3), 308-314. doi: 10.1177/1948550611419266 van de Schoot R., Winter S., Ryan O., Zondervan- Zwijnenburg M., & Depaoli S . ( 2017). A systematic review of Bayesian papers in psychology: The last 25 years. Psychological Methods, 22( 2), 217-239. doi: 10.1037/met0000100 pmid: 28594224 Vanpaemel, W.(2010). Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal of Mathematical Psychology, 54( 6), 491-498. doi: 10.1016/j.jmp.2010.07.003 Wagenmakers, E.-J.(2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review , 14( 5), 779-804. doi: 10.3758/BF03194105 pmid: 18087943 Wagenmakers E.-J., Beek T. F., Rotteveel M., Gierholz A., Matzke D., Steingroever H., … Pinto Y . ( 2015). Turning the hands of time again: A purely confirmatory replication study and a Bayesian analysis. Frontiers in Psychology, 6, 494. doi: 10.3389/fpsyg.2015.00494 pmid: 25964771 Wagenmakers E.-J., Lodewyckx T., Kuriyal H., & Grasman R . ( 2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive Psychology, 60( 3), 158-189. doi: 10.1016/j.cogpsych.2009.12.001 pmid: 20064637 Wagenmakers E.-J., Love J., Marsman M., Jamil T., Ly A., Verhagen J., … van Doorn J . ( 2017). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 1-19. doi: 10.3758/s13423-017-1323-7 pmid: 28685272 Wagenmakers E.-J., Marsman M., Jamil T., Ly A., Verhagen J., Love J., … Morey R. D . ( 2017). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 1-23. doi: 10.3758/s13423-017-1343-3 Wagenmakers E.-J., Verhagen J., Ly A., Matzke D., Steingroever H., Rouder J. N., & Morey R. D . ( 2017). The need for Bayesian hypothesis testing in psychological science. In S. O. Lilienfeld & I. D. Waldman (Eds.), Psychological science under scrutiny (pp. 123-138). Chichester: John Wiley & Sons, Inc. doi: 10.1002/9781119095910.ch8 Wagenmakers E.-J., Wetzels R., Borsboom D., & van der Maas, H. L. J.(2011). Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100( 3), 426-432. doi: 10.1037/a0022790 pmid: 212809651 Wagenmakers E.-J., Wetzels R., Borsboom D., van der Maas, H. L. J., & Kievit R. A . ( 2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7( 6), 632-638. doi: 10.1177/1745691612463078 pmid: 26168122 Wasserstein,R. L., & Lazar, N. A . ( 2016). The ASA's statement on p -values: Context, process, and purpose. The American Statistician , 70( 2), 129-133. Wetzels R., Matzke D., Lee M. D., Rouder J. N., Iverson G. J., & Wagenmakers E.-J . ( 2011). Statistical evidence in experimental psychology: An empirical comparison ssing 855 t tests. Perspectives on Psychological Science, 6( 3), 291-298. doi: 10.1177/1745691611406923 Zhu J., Chen J. F., Hu W. B., & Zhang B . ( 2017). Big Learning with Bayesian methods. National Science Review, 4( 4), 627-651. doi: 10.1093/nsr/nwx044 Ziliak S. T., & McCloskey, D. N.( 2008) . The cult of statistical significance. Ann Arbor: University of Michigan Press. Zuo X.-N., Anderson J. S., Bellec P., Birn R. M., Biswal B. B., Blautzik J., … Milham M. P . ( 2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Nature Scientific Data, 1, 140049. doi: 10.1038/sdata.2014.49 pmid: 25977800 Zuo, X.-N.,&Xing, X.-X.(2014). Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: A systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100-118. doi: 10.1016/j.neubiorev.2014.05.009 pmid: 24875392 王珺, 宋琼雅, 许岳培, 贾彬彬, 陆春雷, 陈曦, 戴紫旭, 黄之玥, 李振江, 林景希, 罗婉莹, 施赛男, 张莹莹, 臧玉峰, 左西年, 胡传鹏. 解读不显著结果:基于500个实证研究的量化分析 [J]. 心理科学进展, 2021, 29(3): 381-393. 王阳, 温忠麟, 付媛姝. 等效性检验——结构方程模型评价和测量不变性分析的新视角 [J]. 心理科学进展, 2020, 28(11): 1961-1969. 仲晓波. 关于假设检验的争议:问题的澄清与解决 [J]. 心理科学进展, 2016, 24(10): 1670-1676. 李富洪;曹云飞;曹碧华;蔡雪丽;李红. 假设形成与检验的神经机制 [J]. 心理科学进展, 2012, 20(2): 191-196. Lyndsey Nickels. 认知损伤的评估 [J]. 心理科学进展, 2008, 16(1): 10-13.