峰值查找:signal.find_peaks(spectrum, prominence=0, distance=200)
-
prominence:显著性阈值,峰值点左右延伸一条直线不超过比当前峰值高的点,左右两段最小值中的较大值与峰值之间的差值作为显著性值;
-
distance:水平距离,峰值之间水平距离阈值。
a = np.array([2, 3, 1, 5, 4, 7, 2, 6, 2])
peak_idx, props = signal.find_peaks(a, distance=1, prominence=0, height=3)
peak_idx, props
(array([1, 3, 5, 7], dtype=int64),
{'peak_heights': array([3., 5., 7., 6.]),
'prominences': array([1., 1., 5., 4.]),
'left_bases': array([0, 2, 2, 6], dtype=int64),
'right_bases': array([2, 4, 6, 8], dtype=int64)})
符合条件的峰值点索引为[1,3,5,7],对应值为[3,5,7,6]
1. 峰值3的显著性:从峰值3向左右分别延长一条直线,直到最后一个不超过当前峰值的点,得到两段线段,左边线段最小值称为left_base,右边线段最小值称为right_base,3向左延伸到2(索引0),向右延伸到2(索引2),显著性值为3-max(a[0], a[2])=1;
2. 峰值5的显著性:5向左延伸到1(索引2),向右延伸到4(索引4),显著性值为5-max(a[2], a[4])=1;
3. 峰值7的显著性:7向左延伸到1(索引2),向右延伸到2(索引6),显著性值为7-max(a[2], a[6])=5;
2. 峰值6的显著性:6向左延伸到2(索引6),向右延伸到2(索引8),显著性值为6-max(a[6], a[8])=4;
4. 将临近的特征点进行组合形成特征点对
5. 对每个特征点对进行hash编码
编码过程:将f1和f2进行10bit量化,其余bit用来存储时间偏移合集形成32bit的hash码
Hash = f1|f2<<10|diff_t<<20,存储信息(t1,Hash)
具体步骤如下:
-
傅里叶变换得到频谱;
-
每帧选取n_peaks个极大值点(基于显著性的峰值查找)—>(i, freq),所有特征点追加到列表;
-
每个极值点在其附近邻域(如i:i+100)内生成一定数量特征对(附近邻域满足一定条件,如diff=other_time-cur_time,diff>1&&diff<10),将特征对编码成Hash值(32位),diff<<20 | other_time<<10 |cur_time,Hash值存入数据库Hash—>(ref_i, song_id);
-
提取待检索音频的Hash值,查找其Hash值在数据库中哪些音乐中出现song_id—>(Hash, ref_i, test_i);
-
统计同一song_id中相对时间偏移test_i-ref_i出现最多的次数;
-
统计所有song_id中相对偏移最多次数最大的索引,即得到检索的song_id。
具体实现如下:
import numpy as np
import librosa
from scipy import signal
import pickle
import os
fix_rate = 16000
win_length_seconds = 0.5
frequency_bits = 10
num_peaks = 15
# 构造歌曲名与歌曲id之间的映射字典
def song_collect(base_path):
index = 0
dic_idx2song = {}
for roots, dirs, files in os.walk(base_path):
for file in files:
if file.endswith(('.mp3', '.wav')):
file_song = os.path.join(roots, file)
dic_idx2song[index] = file_song
index += 1
return dic_idx2song
# 提取局部最大特征点
def collect_map(y, fs, win_length_seconds=0.5, num_peaks=15):
win_length = int(win_length_seconds * fs)
hop_length = int(win_length // 2)
n_fft = int(2**np.ceil(np.log2(win_length)))
S = librosa.stft(y, n_fft=n_fft, win_length=win_length, hop_length=hop_length)
S = np.abs(S) # 获取频谱图
D, T = np.shape(S)
constellation_map = []
for i in range(T):
spectrum = S[:, i]
peaks_index, props = signal.find_peaks(spectrum, prominence=0, distance=200)
# 根据显著性进行排序
n_peaks= min(num_peaks, len(peaks_index))
largest_peaks_index = np.argpartition(props['prominences'], -n_peaks)[-n_peaks:]
for peak_index in peaks_index[largest_peaks_index]:
frequency = fs / n_fft * peak_index
# 保存局部最大值点的时-频信息
constellation_map.append([i, frequency])
return constellation_map
# 进行Hash编码
def create_hash(constellation_map, fs, frequency_bits=10, song_id=None):
upper_frequency = fs / 2
hashes = {}
for idx, (time, freq) in enumerate(constellation_map):
for other_time, other_freq in constellation_map[idx: idx + 100]: # 从邻近的100个点中找点对
diff = int(other_time - time)
if diff <= 1 or diff > 10: # 在一定时间范围内找点对
continue
freq_binned = int(freq / upper_frequency * (2 ** frequency_bits))
other_freq_binned = int(other_freq / upper_frequency * (2 ** frequency_bits))
hash = int(freq_binned) | (int(other_freq_binned) << 10) | (int(diff) << 20)
hashes[hash] = (time, song_id)
return hashes
特征提取:feature_collect.py
# 获取数据库中所有音乐
path_music = 'data'
current_path = os.getcwd()
path_songs = os.path.join(current_path, path_music)
dic_idx2song = song_collect(path_songs)
# 对每条音乐进行特征提取
database = {}
for song_id in dic_idx2song.keys():
file = dic_idx2song[song_id]
print("collect info of file", file)
# 读取音乐
y, fs = librosa.load(file, sr=fix_rate)
# 提取特征对
constellation_map = collect_map(y, fs, win_length_seconds=win_length_seconds, num_peaks=num_peaks)
# 获取hash值
hashes = create_hash(constellation_map, fs, frequency_bits=frequency_bits, song_id=song_id)
# 把hash信息填充入数据库
for hash, time_index_pair in hashes.items():
if hash not in database:
database[hash] = []
database[hash].append(time_index_pair)
# 对数据进行保存
with open('database.pickle', 'wb') as db:
pickle.dump(database, db, pickle.HIGHEST_PROTOCOL)
with open('song_index.pickle', 'wb') as songs:
pickle.dump(dic_idx2song, songs, pickle.HIGHEST_PROTOCOL)
# 加载数据库
database = pickle.load(open('database.pickle', 'rb'))
dic_idx2song = pickle.load(open('song_index.pickle', 'rb'))
print(len(database))
# 检索过程
def getscores(y, fs, database):
# 对检索语音提取hash
constellation_map = collect_map(y, fs)
hashes = create_hash(constellation_map, fs, frequency_bits=10, song_id=None)
# 获取与数据库中每首歌的hash匹配
matches_per_song = {}
for hash, (sample_time, _) in hashes.items():
if hash in database:
maching_occurences = database[hash]
for source_time, song_index in maching_occurences:
if song_index not in matches_per_song:
matches_per_song[song_index] = []
matches_per_song[song_index].append((hash, sample_time, source_time))
scores = {}
# 对于匹配的hash,计算测试样本时间和数据库中样本时间的偏差
for song_index, matches in matches_per_song.items():
# scores[song_index] = len(matches)
song_scores_by_offset = {}
# 对相同的时间偏差进行累计
for hash, sample_time, source_time in matches:
delta = source_time - sample_time
if delta not in song_scores_by_offset:
song_scores_by_offset[delta] = 0
song_scores_by_offset[delta] += 1
# 计算每条歌曲的最大累计偏差
song_scores_by_offset= sorted(song_scores_by_offset.items(), key=lambda x: x[1], reverse=True)
scores[song_index] = song_scores_by_offset[0]
scores = sorted(scores.items(), key=lambda x:x[1][1], reverse=True)
return scores
音乐检索:music_research.py
import threading
from playsound import playsound
def cycle(path):
while 1:
playsound(path)
def play(path, cyc=False):
if cyc:
cycle(path)
else:
playsound(path)
path = 'test_music/record4.wav'
y, fs = librosa.load(path, sr=fix_rate)
# 播放待检索音频
music = threading.Thread(target=play, args=(path,))
music.start()
# 检索打分
scores = getscores(y, fs, database)
# 打印检索信息
for k, v in scores:
file = dic_idx2song[k]
name = os.path.split(file)[-1]
# print("%s :%d"%(name, v))
print("%s: %d: %d"%(name, v[0], v[1]))
# 打印结果
if len(scores) > 0 and scores[0][1][1] > 50:
print("检索结果为:", os.path.split(dic_idx2song[scores[0][0]])[-1])
else:
print("没有搜索到该音乐")
麦克风录音识别音乐:
import pyaudio
import wave
RATE = 48000 # 采样率
CHUNK = 1024 # 帧大小
record_seconds = 10 # 录音时长s
CHANNWLS = 2 # 通道数
# 创建pyaudio流
audio = pyaudio.PyAudio()
stream = audio.open(format=pyaudio.paInt16, # 使用量化位数16位
channels=CHANNWLS, # 输入声道数目
rate=RATE, # 采样率
input=True, # 打开输入流
frames_per_buffer=CHUNK) # 缓冲区大小
frames = [] # 存放录制的数据
# 开始录音
print('录音中。。。')
for i in range(0, int(RATE / CHUNK * record_seconds)):
# 从麦克风读取数据流
data = stream.read(CHUNK)
# 将数据追加到列表中
frames.append(data)
# 停止录音,关闭输入流
stream.stop_stream()
stream.close()
audio.terminate()
# 将录音数据写入wav文件中
with wave.open('test_music/test.wav', 'wb') as wf:
wf.setnchannels(CHANNWLS)
wf.setsampwidth(audio.get_sample_size(pyaudio.paInt16))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
# 打开录音文件
path = 'test_music/test.wav'
y, fs = librosa.load(path, sr=fix_rate)
# 线程播放待检索音频
# music = threading.Thread(target=play, args=(path,))
# music.start()
# 音乐检索
print('检索中。。。')
scores = getscores(y, fix_rate, database)
# 打印检索信息
# for k, v in scores:
# file = dic_idx2song[k]
# name = os.path.split(file)[-1]
# # print("%s :%d"%(name, v))
# print("%s: %d: %d"%(name, v[0], v[1]))
# 打印结果
if len(scores) > 0 and scores[0][1][1] > 50:
print("检索结果为:", os.path.split(dic_idx2song[scores[0][0]])[-1])
else:
print("没有搜索到该音乐")
参考:
音乐检索-Shazam算法原理_哔哩哔哩_bilibili
对
Sha
zam
音乐
识别
算法
的小型 Matlab 实现
A部分:特征提取
打开local_settings_sample.m,填写您选择的songdir和hashdir并另存为local_settings.m。可以是任何目录,hashdir并且必须手动创建。必须包含 .wav 格式、单声道和采样频率(最好是 8kHz)的songdir音频片段。对于
音乐
识别
,每个音频片段都是一首完整的歌曲。
运行extract_features.m。.mat这会在文件中为每首歌曲创建一个哈希表。详情见王博士的解释。
B 部分:
音乐
识别
测试 1 - 运行tag_test.m:该文件采用一段测试
音乐
,添加噪音并尝试通过将其与哈希表匹配来
识别
它。
测试 2 - 运行tagmix_test.m(实验性):此文件混合了 2 首歌曲的片段并尝试
识别
两者。
如何用java来实现
sha
zam
?
几天以前我读了一篇论文 :How
sha
zam
works?(
sha
zam
的工作原理)
这让我有了自己写一个
sha
zam
的兴趣,并且更重要的是,我对用java实现
sha
zam
更感兴趣。
关于
sha
zam
sha
zam
的最重要一项功能即是类似于网易云
音乐
和QQ
音乐
中的“听歌识曲”,当你开启听歌识曲功能以后,仅需要两三秒,便可...
在讲
算法
之前,上一些前人的资料。
http://coding-geek.com/how-
sha
zam
-works/
https://laplacian.wordpress.com/2009/01/10/how-
sha
zam
-works/
http://royvanrijn.com/blog/2010/06/creating-
sha
zam
-in-java/
当然历史也有点久远了,如果你有心去...
音乐
雷达
sha
zam
算法
Ever wondered how your favorite music searching app works?. Well, this is the correct place to find out.有没有想过您喜欢的
音乐
搜索应用程序如何工作? 好吧,这是找出正确的地方。
Ever since I was a kid I was both a music and ...