相关文章推荐

The main statsmodels API is split into models:

  • statsmodels.api : Cross-sectional models and methods. Canonically imported using import statsmodels.api as sm .

  • statsmodels.tsa.api : Time-series models and methods. Canonically imported using import statsmodels.tsa.api as tsa .

  • statsmodels.formula.api : A convenience interface for specifying models using formula strings and DataFrames. This API directly exposes the from_formula class method of models that support the formula API. Canonically imported using import statsmodels.formula.api as smf

  • The API focuses on models and the most frequently used statistical test, and tools. Import Paths and Structure explains the design of the two API modules and how importing from the API differs from directly importing from the module where the model is defined. See the detailed topic pages in the User Guide for a complete list of available models, statistics, and tools.

    statsmodels.api

    Regression

    OLS (endog[, exog, missing, hasconst])

    Ordinary Least Squares

    WLS (endog, exog[, weights, missing, hasconst])

    Weighted Least Squares

    GLS (endog, exog[, sigma, missing, hasconst])

    Generalized Least Squares

    GLSAR (endog[, exog, rho, missing, hasconst])

    Generalized Least Squares with AR covariance structure

    RecursiveLS (endog, exog[, constraints])

    Recursive least squares

    RollingOLS (endog, exog[, window, min_nobs, ...])

    Rolling Ordinary Least Squares

    RollingWLS (endog, exog[, window, weights, ...])

    Rolling Weighted Least Squares

    Imputation

    BayesGaussMI (data[, mean_prior, cov_prior, ...])

    Bayesian Imputation using a Gaussian model.

    MI (imp, model[, model_args_fn, ...])

    MI performs multiple imputation using a provided imputer object.

    MICE (model_formula, model_class, data[, ...])

    Multiple Imputation with Chained Equations.

    MICEData (data[, perturbation_method, k_pmm, ...])

    Wrap a data set to allow missing data handling with MICE.

    Generalized Estimating Equations

    GEE (endog, exog, groups[, time, family, ...])

    Marginal Regression Model using Generalized Estimating Equations.

    NominalGEE (endog, exog, groups[, time, ...])

    Nominal Response Marginal Regression Model using GEE.

    OrdinalGEE (endog, exog, groups[, time, ...])

    Ordinal Response Marginal Regression Model using GEE

    Generalized Linear Models

    GLM (endog, exog[, family, offset, exposure, ...])

    Generalized Linear Models

    GLMGam (endog[, exog, smoother, alpha, ...])

    Generalized Additive Models (GAM)

    BinomialBayesMixedGLM (endog, exog, exog_vc, ...)

    Generalized Linear Mixed Model with Bayesian estimation

    PoissonBayesMixedGLM (endog, exog, exog_vc, ident)

    Generalized Linear Mixed Model with Bayesian estimation

    Discrete and Count Models

    Logit (endog, exog[, offset, check_rank])

    Logit Model

    Probit (endog, exog[, offset, check_rank])

    Probit Model

    MNLogit (endog, exog[, check_rank])

    Multinomial Logit Model

    OrderedModel (endog, exog[, offset, distr])

    Ordinal Model based on logistic or normal distribution

    Poisson (endog, exog[, offset, exposure, ...])

    Poisson Model

    NegativeBinomial (endog, exog[, ...])

    Negative Binomial Model

    NegativeBinomialP (endog, exog[, p, offset, ...])

    Generalized Negative Binomial (NB-P) Model

    GeneralizedPoisson (endog, exog[, p, offset, ...])

    Generalized Poisson Model

    ZeroInflatedPoisson (endog, exog[, ...])

    Poisson Zero Inflated Model

    ZeroInflatedNegativeBinomialP (endog, exog[, ...])

    Zero Inflated Generalized Negative Binomial Model

    ZeroInflatedGeneralizedPoisson (endog, exog)

    Zero Inflated Generalized Poisson Model

    ConditionalLogit (endog, exog[, missing])

    Fit a conditional logistic regression model to grouped data.

    ConditionalMNLogit (endog, exog[, missing])

    Fit a conditional multinomial logit model to grouped data.

    ConditionalPoisson (endog, exog[, missing])

    Fit a conditional Poisson regression model to grouped data.

    Multivariate Models

    Factor ([endog, n_factor, corr, method, smc, ...])

    Factor analysis

    MANOVA (endog, exog[, missing, hasconst])

    Multivariate Analysis of Variance

    PCA (data[, ncomp, standardize, demean, ...])

    Principal Component Analysis

    Other Models

    MixedLM (endog, exog, groups[, exog_re, ...])

    Linear Mixed Effects Model

    SurvfuncRight (time, status[, entry, title, ...])

    Estimation and inference for a survival function.

    PHReg (endog, exog[, status, entry, strata, ...])

    Cox Proportional Hazards Regression Model

    QuantReg (endog, exog, **kwargs)

    Quantile Regression

    RLM (endog, exog[, M, missing])

    Robust Linear Model

    BetaModel (endog, exog[, exog_precision, ...])

    Beta Regression.

    Graphics

    ProbPlot (data[, dist, fit, distargs, a, ...])

    Q-Q and P-P Probability Plots

    qqline (ax, line[, x, y, dist, fmt])

    Plot a reference line for a qqplot.

    qqplot (data[, dist, distargs, a, loc, ...])

    Q-Q plot of the quantiles of x versus the quantiles/ppf of a distribution.

    qqplot_2samples (data1, data2[, xlabel, ...])

    Q-Q Plot of two samples' quantiles.

    Statistics

    Description (data[, stats, numeric, ...])

    Extended descriptive statistics for data

    describe (data[, stats, numeric, ...])

    Extended descriptive statistics for data

    Tools

    test ([extra_args, exit])

    Run the test suite

    add_constant (data[, prepend, has_constant])

    Add a column of ones to an array.

    load_pickle (fname)

    Load a previously saved object

    show_versions ([show_dirs])

    List the versions of statsmodels and any installed dependencies

    webdoc ([func, stable])

    Opens a browser and displays online documentation

    statsmodels.tsa.api

    Statistics and Tests

    acf (x[, adjusted, nlags, qstat, fft, alpha, ...])

    Calculate the autocorrelation function.

    acovf (x[, adjusted, demean, fft, missing, nlag])

    Estimate autocovariances.

    adfuller (x[, maxlag, regression, autolag, ...])

    Augmented Dickey-Fuller unit root test.

    bds (x[, max_dim, epsilon, distance])

    BDS Test Statistic for Independence of a Time Series

    ccf (x, y[, adjusted, fft])

    The cross-correlation function.

    ccovf (x, y[, adjusted, demean, fft])

    Calculate the crosscovariance between two series.

    coint (y0, y1[, trend, method, maxlag, ...])

    Test for no-cointegration of a univariate equation.

    kpss (x[, regression, nlags, store])

    Kwiatkowski-Phillips-Schmidt-Shin test for stationarity.

    pacf (x[, nlags, method, alpha])

    Partial autocorrelation estimate.

    pacf_ols (x[, nlags, efficient, adjusted])

    Calculate partial autocorrelations via OLS.

    pacf_yw (x[, nlags, method])

    Partial autocorrelation estimated with non-recursive yule_walker.

    q_stat (x, nobs)

    Compute Ljung-Box Q Statistic.

    range_unit_root_test (x[, store])

    Range unit-root test for stationarity.

    zivot_andrews

    Zivot-Andrews structural-break unit-root test.

    Univariate Time-Series Analysis

    AutoReg (endog, lags[, trend, seasonal, ...])

    Autoregressive AR-X(p) model

    ARDL (endog, lags[, exog, order, trend, ...])

    Autoregressive Distributed Lag (ARDL) Model

    ARIMA (endog[, exog, order, seasonal_order, ...])

    Autoregressive Integrated Moving Average (ARIMA) model, and extensions

    SARIMAX (endog[, exog, order, ...])

    Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors model

    ardl_select_order (endog, maxlag, exog, maxorder)

    ARDL order selection

    arma_order_select_ic (y[, max_ar, max_ma, ...])

    Compute information criteria for many ARMA models.

    arma_generate_sample (ar, ma, nsample[, ...])

    Simulate data from an ARMA.

    ArmaProcess ([ar, ma, nobs])

    Theoretical properties of an ARMA process for specified lag-polynomials.

    UECM (endog, lags[, exog, order, trend, ...])

    Unconstrained Error Correlation Model(UECM)

    Exponential Smoothing

    ExponentialSmoothing (endog[, trend, ...])

    Holt Winter's Exponential Smoothing

    Holt (endog[, exponential, damped_trend, ...])

    Holt's Exponential Smoothing

    SimpleExpSmoothing (endog[, ...])

    Simple Exponential Smoothing

    ExponentialSmoothing (endog[, trend, ...])

    Linear exponential smoothing models

    ETSModel (endog[, error, trend, ...])

    ETS models.

    Multivariate Time Series Models

    DynamicFactor (endog, k_factors, factor_order)

    Dynamic factor model

    DynamicFactorMQ (endog[, k_endog_monthly, ...])

    Dynamic factor model with EM algorithm; option for monthly/quarterly data.

    VAR (endog[, exog, dates, freq, missing])

    Fit VAR(p) process and do lag order selection

    VARMAX (endog[, exog, order, trend, ...])

    Vector Autoregressive Moving Average with eXogenous regressors model

    SVAR (endog, svar_type[, dates, freq, A, B, ...])

    Fit VAR and then estimate structural components of A and B, defined:

    VECM (endog[, exog, exog_coint, dates, freq, ...])

    Class representing a Vector Error Correction Model (VECM).

    UnobservedComponents (endog[, level, trend, ...])

    Univariate unobserved components time series model

    Filters and Decompositions

    seasonal_decompose (x[, model, filt, period, ...])

    Seasonal decomposition using moving averages.

    STL (endog[, period, seasonal, trend, ...])

    Season-Trend decomposition using LOESS.

    MSTL (endog[, periods, windows, lmbda, ...])

    Season-Trend decomposition using LOESS for multiple seasonalities.

    bkfilter (x[, low, high, K])

    Filter a time series using the Baxter-King bandpass filter.

    cffilter (x[, low, high, drift])

    Christiano Fitzgerald asymmetric, random walk filter.

    hpfilter (x[, lamb])

    Hodrick-Prescott filter.

    Markov Regime Switching Models

    MarkovAutoregression (endog, k_regimes, order)

    Markov switching regression model

    MarkovRegression (endog, k_regimes[, trend, ...])

    First-order k-regime Markov switching regression model

    Forecasting

    STLForecast (endog, model, *[, model_kwargs, ...])

    Model-based forecasting using STL to remove seasonality

    ThetaModel (endog, *[, period, ...])

    The Theta forecasting model of Assimakopoulos and Nikolopoulos (2000)

    Time-Series Tools

    add_lag (x[, col, lags, drop, insert])

    Returns an array with lags included given an array.

    add_trend (x[, trend, prepend, has_constant])

    Add a trend and/or constant to an array.

    detrend (x[, order, axis])

    Detrend an array with a trend of given order along axis 0 or 1.

    lagmat (x, maxlag[, trim, original, use_pandas])

    Create 2d array of lags.

    lagmat2ds (x, maxlag0[, maxlagex, dropex, ...])

    Generate lagmatrix for 2d array, columns arranged by variables.

    DeterministicProcess (index, *[, period, ...])

    Container class for deterministic terms.

    X12/X13 Interface

    x13_arima_analysis (endog[, maxorder, ...])

    Perform x13-arima analysis for monthly or quarterly data.

    x13_arima_select_order (endog[, maxorder, ...])

    Perform automatic seasonal ARIMA order identification using x12/x13 ARIMA.

    statsmodels.formula.api

    Models

    The lower case names are aliases to the from_formula method of the corresponding model class. The function descriptions of the methods exposed in the formula API are generic. See the documentation for the parent model for details.

    gls (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    wls (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    ols (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    glsar (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    mixedlm (formula, data[, re_formula, ...])

    Create a Model from a formula and dataframe.

    glm (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    gee (formula, groups, data[, subset, time, ...])

    Create a Model from a formula and dataframe.

    ordinal_gee (formula, groups, data[, subset, ...])

    Create a Model from a formula and dataframe.

    nominal_gee (formula, groups, data[, subset, ...])

    Create a Model from a formula and dataframe.

    rlm (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    logit (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    probit (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    mnlogit (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    poisson (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    negativebinomial (formula, data[, subset, ...])

    Create a Model from a formula and dataframe.

    quantreg (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    phreg (formula, data[, status, entry, ...])

    Create a proportional hazards regression model from a formula and dataframe.

    glmgam (formula, data[, subset, drop_cols])

    Create a Model from a formula and dataframe.

    conditional_logit (formula, data[, subset, ...])

    Create a Model from a formula and dataframe.

    conditional_mnlogit (formula, data[, subset, ...])

    Create a Model from a formula and dataframe.

    conditional_poisson (formula, data[, subset, ...])

    Create a Model from a formula and dataframe.

     
    推荐文章