The main statsmodels API is split into models:
statsmodels.api
: Cross-sectional models and methods. Canonically imported
using
import
statsmodels.api
as
sm
.
statsmodels.tsa.api
: Time-series models and methods. Canonically imported
using
import
statsmodels.tsa.api
as
tsa
.
statsmodels.formula.api
: A convenience interface for specifying models
using formula strings and DataFrames. This API directly exposes the
from_formula
class method of models that support the formula API. Canonically imported using
import
statsmodels.formula.api
as
smf
The API focuses on models and the most frequently used statistical test, and tools. Import Paths and Structure explains the design of the two API modules and how importing from the API differs from directly importing from the module where the model is defined. See the detailed topic pages in the User Guide for a complete list of available models, statistics, and tools.
statsmodels.api
¶
OLS
(endog[, exog, missing, hasconst])
Ordinary Least Squares
WLS
(endog, exog[, weights, missing, hasconst])
Weighted Least Squares
GLS
(endog, exog[, sigma, missing, hasconst])
Generalized Least Squares
GLSAR
(endog[, exog, rho, missing, hasconst])
Generalized Least Squares with AR covariance structure
RecursiveLS
(endog, exog[, constraints])
Recursive least squares
RollingOLS
(endog, exog[, window, min_nobs, ...])
Rolling Ordinary Least Squares
RollingWLS
(endog, exog[, window, weights, ...])
Rolling Weighted Least Squares
BayesGaussMI
(data[, mean_prior, cov_prior, ...])
Bayesian Imputation using a Gaussian model.
MI
(imp, model[, model_args_fn, ...])
MI performs multiple imputation using a provided imputer object.
MICE
(model_formula, model_class, data[, ...])
Multiple Imputation with Chained Equations.
MICEData
(data[, perturbation_method, k_pmm, ...])
Wrap a data set to allow missing data handling with MICE.
GEE
(endog, exog, groups[, time, family, ...])
Marginal Regression Model using Generalized Estimating Equations.
NominalGEE
(endog, exog, groups[, time, ...])
Nominal Response Marginal Regression Model using GEE.
OrdinalGEE
(endog, exog, groups[, time, ...])
Ordinal Response Marginal Regression Model using GEE
GLM
(endog, exog[, family, offset, exposure, ...])
Generalized Linear Models
GLMGam
(endog[, exog, smoother, alpha, ...])
Generalized Additive Models (GAM)
BinomialBayesMixedGLM
(endog, exog, exog_vc, ...)
Generalized Linear Mixed Model with Bayesian estimation
PoissonBayesMixedGLM
(endog, exog, exog_vc, ident)
Generalized Linear Mixed Model with Bayesian estimation
Logit
(endog, exog[, offset, check_rank])
Logit Model
Probit
(endog, exog[, offset, check_rank])
Probit Model
MNLogit
(endog, exog[, check_rank])
Multinomial Logit Model
OrderedModel
(endog, exog[, offset, distr])
Ordinal Model based on logistic or normal distribution
Poisson
(endog, exog[, offset, exposure, ...])
Poisson Model
NegativeBinomial
(endog, exog[, ...])
Negative Binomial Model
NegativeBinomialP
(endog, exog[, p, offset, ...])
Generalized Negative Binomial (NB-P) Model
GeneralizedPoisson
(endog, exog[, p, offset, ...])
Generalized Poisson Model
ZeroInflatedPoisson
(endog, exog[, ...])
Poisson Zero Inflated Model
ZeroInflatedNegativeBinomialP
(endog, exog[, ...])
Zero Inflated Generalized Negative Binomial Model
ZeroInflatedGeneralizedPoisson
(endog, exog)
Zero Inflated Generalized Poisson Model
ConditionalLogit
(endog, exog[, missing])
Fit a conditional logistic regression model to grouped data.
ConditionalMNLogit
(endog, exog[, missing])
Fit a conditional multinomial logit model to grouped data.
ConditionalPoisson
(endog, exog[, missing])
Fit a conditional Poisson regression model to grouped data.
Factor
([endog, n_factor, corr, method, smc, ...])
Factor analysis
MANOVA
(endog, exog[, missing, hasconst])
Multivariate Analysis of Variance
PCA
(data[, ncomp, standardize, demean, ...])
Principal Component Analysis
MixedLM
(endog, exog, groups[, exog_re, ...])
Linear Mixed Effects Model
SurvfuncRight
(time, status[, entry, title, ...])
Estimation and inference for a survival function.
PHReg
(endog, exog[, status, entry, strata, ...])
Cox Proportional Hazards Regression Model
QuantReg
(endog, exog, **kwargs)
Quantile Regression
RLM
(endog, exog[, M, missing])
Robust Linear Model
BetaModel
(endog, exog[, exog_precision, ...])
Beta Regression.
ProbPlot
(data[, dist, fit, distargs, a, ...])
Q-Q and P-P Probability Plots
qqline
(ax, line[, x, y, dist, fmt])
Plot a reference line for a qqplot.
qqplot
(data[, dist, distargs, a, loc, ...])
Q-Q plot of the quantiles of x versus the quantiles/ppf of a distribution.
qqplot_2samples
(data1, data2[, xlabel, ...])
Q-Q Plot of two samples' quantiles.
Description
(data[, stats, numeric, ...])
Extended descriptive statistics for data
describe
(data[, stats, numeric, ...])
Extended descriptive statistics for data
test
([extra_args, exit])
Run the test suite
add_constant
(data[, prepend, has_constant])
Add a column of ones to an array.
load_pickle
(fname)
Load a previously saved object
show_versions
([show_dirs])
List the versions of statsmodels and any installed dependencies
webdoc
([func, stable])
Opens a browser and displays online documentation
statsmodels.tsa.api
¶
acf
(x[, adjusted, nlags, qstat, fft, alpha, ...])
Calculate the autocorrelation function.
acovf
(x[, adjusted, demean, fft, missing, nlag])
Estimate autocovariances.
adfuller
(x[, maxlag, regression, autolag, ...])
Augmented Dickey-Fuller unit root test.
bds
(x[, max_dim, epsilon, distance])
BDS Test Statistic for Independence of a Time Series
ccf
(x, y[, adjusted, fft])
The cross-correlation function.
ccovf
(x, y[, adjusted, demean, fft])
Calculate the crosscovariance between two series.
coint
(y0, y1[, trend, method, maxlag, ...])
Test for no-cointegration of a univariate equation.
kpss
(x[, regression, nlags, store])
Kwiatkowski-Phillips-Schmidt-Shin test for stationarity.
pacf
(x[, nlags, method, alpha])
Partial autocorrelation estimate.
pacf_ols
(x[, nlags, efficient, adjusted])
Calculate partial autocorrelations via OLS.
pacf_yw
(x[, nlags, method])
Partial autocorrelation estimated with non-recursive yule_walker.
q_stat
(x, nobs)
Compute Ljung-Box Q Statistic.
range_unit_root_test
(x[, store])
Range unit-root test for stationarity.
Zivot-Andrews structural-break unit-root test.
AutoReg
(endog, lags[, trend, seasonal, ...])
Autoregressive AR-X(p) model
ARDL
(endog, lags[, exog, order, trend, ...])
Autoregressive Distributed Lag (ARDL) Model
ARIMA
(endog[, exog, order, seasonal_order, ...])
Autoregressive Integrated Moving Average (ARIMA) model, and extensions
SARIMAX
(endog[, exog, order, ...])
Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors model
ardl_select_order
(endog, maxlag, exog, maxorder)
ARDL order selection
arma_order_select_ic
(y[, max_ar, max_ma, ...])
Compute information criteria for many ARMA models.
arma_generate_sample
(ar, ma, nsample[, ...])
Simulate data from an ARMA.
ArmaProcess
([ar, ma, nobs])
Theoretical properties of an ARMA process for specified lag-polynomials.
UECM
(endog, lags[, exog, order, trend, ...])
Unconstrained Error Correlation Model(UECM)
ExponentialSmoothing
(endog[, trend, ...])
Holt Winter's Exponential Smoothing
Holt
(endog[, exponential, damped_trend, ...])
Holt's Exponential Smoothing
SimpleExpSmoothing
(endog[, ...])
Simple Exponential Smoothing
ExponentialSmoothing
(endog[, trend, ...])
Linear exponential smoothing models
ETSModel
(endog[, error, trend, ...])
ETS models.
DynamicFactor
(endog, k_factors, factor_order)
Dynamic factor model
DynamicFactorMQ
(endog[, k_endog_monthly, ...])
Dynamic factor model with EM algorithm; option for monthly/quarterly data.
VAR
(endog[, exog, dates, freq, missing])
Fit VAR(p) process and do lag order selection
VARMAX
(endog[, exog, order, trend, ...])
Vector Autoregressive Moving Average with eXogenous regressors model
SVAR
(endog, svar_type[, dates, freq, A, B, ...])
Fit VAR and then estimate structural components of A and B, defined:
VECM
(endog[, exog, exog_coint, dates, freq, ...])
Class representing a Vector Error Correction Model (VECM).
UnobservedComponents
(endog[, level, trend, ...])
Univariate unobserved components time series model
seasonal_decompose
(x[, model, filt, period, ...])
Seasonal decomposition using moving averages.
STL
(endog[, period, seasonal, trend, ...])
Season-Trend decomposition using LOESS.
MSTL
(endog[, periods, windows, lmbda, ...])
Season-Trend decomposition using LOESS for multiple seasonalities.
bkfilter
(x[, low, high, K])
Filter a time series using the Baxter-King bandpass filter.
cffilter
(x[, low, high, drift])
Christiano Fitzgerald asymmetric, random walk filter.
hpfilter
(x[, lamb])
Hodrick-Prescott filter.
MarkovAutoregression
(endog, k_regimes, order)
Markov switching regression model
MarkovRegression
(endog, k_regimes[, trend, ...])
First-order k-regime Markov switching regression model
STLForecast
(endog, model, *[, model_kwargs, ...])
Model-based forecasting using STL to remove seasonality
ThetaModel
(endog, *[, period, ...])
The Theta forecasting model of Assimakopoulos and Nikolopoulos (2000)
add_lag
(x[, col, lags, drop, insert])
Returns an array with lags included given an array.
add_trend
(x[, trend, prepend, has_constant])
Add a trend and/or constant to an array.
detrend
(x[, order, axis])
Detrend an array with a trend of given order along axis 0 or 1.
lagmat
(x, maxlag[, trim, original, use_pandas])
Create 2d array of lags.
lagmat2ds
(x, maxlag0[, maxlagex, dropex, ...])
Generate lagmatrix for 2d array, columns arranged by variables.
DeterministicProcess
(index, *[, period, ...])
Container class for deterministic terms.
x13_arima_analysis
(endog[, maxorder, ...])
Perform x13-arima analysis for monthly or quarterly data.
x13_arima_select_order
(endog[, maxorder, ...])
Perform automatic seasonal ARIMA order identification using x12/x13 ARIMA.
statsmodels.formula.api
¶
The lower case names are aliases to the from_formula method of the corresponding model class. The function descriptions of the methods exposed in the formula API are generic. See the documentation for the parent model for details.
gls
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
wls
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
ols
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
glsar
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
mixedlm
(formula, data[, re_formula, ...])
Create a Model from a formula and dataframe.
glm
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
gee
(formula, groups, data[, subset, time, ...])
Create a Model from a formula and dataframe.
ordinal_gee
(formula, groups, data[, subset, ...])
Create a Model from a formula and dataframe.
nominal_gee
(formula, groups, data[, subset, ...])
Create a Model from a formula and dataframe.
rlm
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
logit
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
probit
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
mnlogit
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
poisson
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
negativebinomial
(formula, data[, subset, ...])
Create a Model from a formula and dataframe.
quantreg
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
phreg
(formula, data[, status, entry, ...])
Create a proportional hazards regression model from a formula and dataframe.
glmgam
(formula, data[, subset, drop_cols])
Create a Model from a formula and dataframe.
conditional_logit
(formula, data[, subset, ...])
Create a Model from a formula and dataframe.
conditional_mnlogit
(formula, data[, subset, ...])
Create a Model from a formula and dataframe.
conditional_poisson
(formula, data[, subset, ...])
Create a Model from a formula and dataframe.