1.
丁其川, 熊安斌, 赵新刚, 等 基于表面肌电的运动意图识别方法研究及应用综述
自动化学报
2016;
42
(1):13–25.
[
Google Scholar
]
2.
Meng Qingyun, Meng Qiaoling, Yu Hongliu, et al. A survey on sEMG control strategies of wearable hand exoskeleton for rehabilitation//2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan: IEEE, 2017: 165-169.
3.
Phukpattaranont P, Thongpanja S, Anam K, et al Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal.
Med Biol Eng Comput.
2018;
56
(12):2259–2271. doi: 10.1007/s11517-018-1857-5.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
丁帅, 王亮 基于块稀疏贝叶斯学习的肌电信号特征提取
仪器仪表学报
2014;
35
(12):2731–2738.
[
Google Scholar
]
5.
Chen X, Yin Y, Fan Y EMG oscillator model-based energy kernel method for haracterizing muscle intrinsic property under isometric contraction.
Chin Sci Bull.
2014;
59
(14):1556–1567. doi: 10.1007/s11434-014-0147-3.
[
CrossRef
]
[
Google Scholar
]
6.
Chen X, Zeng Y, Yin Y Improving the transparency of an exoskeleton knee joint based on the understanding of motor intent using energy kernel method of EMG.
IEEE Trans Neural Syst Rehabil Eng.
2017;
25
(6):577–588. doi: 10.1109/TNSRE.2016.2582321.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Zeng Y, Yang J, Peng C, et al Evolving gaussian process autoregression based learning of human motion intent using improved energy kernel method of EMG.
IEEE Trans Biomed Eng.
2019;
66
(9):2556–2565. doi: 10.1109/TBME.2019.2892084.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
石欣, 朱家庆, 秦鹏杰, 等 基于改进能量核的下肢表面肌电信号特征提取方法
仪器仪表学报
2020;
41
(1):121–128.
[
Google Scholar
]
9.
Yang Kuo, Zhang Zhen. Real-time pattern recognition for hand gesture based on ANN and surface EMG//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing: IEEE, 2019: 799-802.
10.
Abdel-Hamid O, Mohamed A, Jiang H, et al Convolutional neural networks for speech recognition.
IEEE/ACM Trans Audio, Speech, Language Process.
2014;
22
(10):1533–1545. doi: 10.1109/TASLP.2014.2339736.
[
CrossRef
]
[
Google Scholar
]
11.
Pinzón-Arenas J O, Jiménez-Moreno R, Herrera-Benavides J E. Convolutional neural network for hand gesture recognition using 8 different EMG signals//2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA). Bucaramanga: IEEE, 2019: 1-5.
12.
Atzori M, Cognolato M, Müller H Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands.
Front Neurorobot.
2016;
10
:9.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
14.
Wei W, Wong Y, Du Y, et al A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface.
Pattern Recognit Lett.
2019;
119
:131–138. doi: 10.1016/j.patrec.2017.12.005.
[
CrossRef
]
[
Google Scholar
]
15.
Zhai X, Jelfs B, Chan R M, et al Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network.
Front Neurosci.
2017;
11
:379. doi: 10.3389/fnins.2017.00379.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
He Yunan, Fukuda O, Bu Nan, et al. Surface EMG pattern recognition using long short-term memory combined with multilayer perceptron//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu: IEEE, 2018: 5636-5639.
17.
Wu Yuheng, Zheng Bin, Zhao Yongting. Dynamic gesture recognition based on LSTM-CNN//2018 Chinese Automation Congress (CAC), Xi’an: IEEE, 2018: 2446-2450.
18.
Staudenmann D, Roeleveld K, Stegeman D F, et al Methodological aspects of SEMG recordings for force estimation--a tutorial and review.
J Electromyogr Kinesiol.
2010;
20
(3):375–387. doi: 10.1016/j.jelekin.2009.08.005.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
Du Y C, Lin C H, Shyu L Y, et al Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis.
Expert Syst Appl.
2010;
37
(6):4283–4291.
[
Google Scholar
]
20.
McComas A J, Mrozek K The electrical properties of muscle fiber membranes in dystrophia myotonica and myotonia congenita.
J Neurol Neurosurg Psychiatry.
1968;
31
(5):441–447. doi: 10.1136/jnnp.31.5.441.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Trajano G S, Nosaka K, Blazevich A J Neurophysiological mechanisms underpinning stretch-induced force loss.
Sports Med.
2017;
47
(8):1531–1541. doi: 10.1007/s40279-017-0682-6.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
李伟, 杨向东, 陈恳 基于CNN和RNN联合网络的心音自动分类
计算机工程与设计
2020;
41
(1):46–51.
[
Google Scholar
]
23.
Krizhevsky A, Sutskever I, Hinton G E Imagenet classification with deep convolutional neural networks.
Commun ACM.
2017;
60
(6):84–90. doi: 10.1145/3065386.
[
CrossRef
]
[
Google Scholar
]