原子是化学变化中的最小微粒。(没有外壳)是人类最经典的、使用最为广泛的基本假设。原子的假设,可用来精确的解释物理学中力学、热力学、光学、量子力学、统计力学等等几乎物理方方面面的问题,以及同为自然科学的生物学(用物理学家的眼光看,一切生物过程都是原子的运动)、化学(化学可以使用量子力学等解释)等等,在未来,或许会延伸到各个学科。
原子核带正电荷,束缚电子带负电荷,两者所带电荷相等,符号相反,因此,原子本身呈中性。束缚电子按一定的轨道绕原子核运动,当原子吸收外来能量,使轨道电子脱离原子核的吸引而自由运动时,原子便失去电子而显电性,成为离子。
原子是构成元素的最小单元,是物质结构的一个层次.原子一词来自希腊文,“意思是不可分割的。”公元前4世纪,古希腊物理学家
德谟克利特
提出这一概念,并把它当作物质的最小单元,但是差不多同时代的亚里士多德等人却反对这种物质的原子观,他们认为物质是连续的,这种观点在中世纪占优势,但随着科学的进步和实验技术的发展,物质的原子观在16世纪之后又为人们所接受,著名学者伽利略、笛卡儿、.牛顿等人都支持这种观点.著名的俄国化学家门捷列夫所发现的周期律指出各种化学元素的原子间相互关联的性质是建立原子结构理论时的一个指导原则.从近代物理观点看,原子只不过是物质结构的一个层次,这个层次介于分子和原子核之间.
原子的中心是一个微小的由
核子
(
质子
和
中子
:由
夸克
构成)组成的原子核,占据了整个原子的绝大部分质量。
原子核中的质子和中子紧密地堆在一起,因此原子核的密度很大。质子和中子的质量大致相等,中子略高一些。质子带正电荷,中子不带电荷,是电中性的。所以整个原子核是带正电荷的。原子核即使和原子相比,还是非常细小的——比原子要小100,000倍。原子的大小主要是由最外电子层的大小所决定的。如有原子是一个足球场,那原子核就是场中央的一颗绿豆。所以原子几乎是空的,被电子占据著。
电子是带负电荷的。它们远比质子和中子轻,质量只有质子的约1/1836。它们高速地围著
原子核
运转。电子围绕原子核的轨道并不都一样。它们在一些叫
电子层
的区域内围着原子核转,那些最接近原子核的在一层,远一些的又在另外一层。每一层都有一个数字。最内层的是层1,外一层的是层2,如此类推。每一层都可以容纳一个最高限量数的电子数目,层1可容纳两个,层2八个,层3十八个,层4三十二个,越往外层可容纳的电子就越多。
若设层数为n,则第n层可容纳
电子数
为2n²个。最外层电子不大于8个,最接近最外层的电子层不大于十八个,但也有特例。
在一颗
电中性
的原子中,
质子
和电子的数目是一样的。另一方面,中子的数目不一定等于质子的数目。带电荷的原子叫离子。电子数目比质子小的原子带正电荷,叫阳离子。相反的原子带负电荷,叫阴离子。金属元素最外层电子一般小于四个,在反应中易失去电子,趋向达到稳定的结构,成为阳离子。
非金属元素
最外层电子一般多于四个,在
化学反应
中易得到电子,趋向达到稳定的结构,成为阴离子。
原子序决定了该原子是那个族或那类元素。例如,碳原子是那些有6颗
质子
的原子。所有相同原子序的原子在很多物理性质都是一样的,所显示的化学反应都一样。质子和
中子
数目的总和叫质量数。中子的数目对该原子的元素并没有任何影响 —— 在同一元素中,有不同的成员,每个的原子序是一样的,但质量数都不同。这些成员叫同位素。元素的名字是用它的元素名称紧随著质量数来表示,如碳14(每个原子中含有6个质子和8个中子)
只有94种原子是天然存在的(其余的都是在实验室中人工制造的) 每种原子都有一个名称,每个名称都有一个缩写。
俄国化学家门捷列夫根据不同原子的
化学性质
将它们排列在一张表中,这就是
元素周期表
。为纪念门捷列夫,第101号元素被命名为钔。
首20种原子(或元素)依次为氢、氦、锂、铍、硼、碳、氮、氧、氟、氖 、钠、镁、铝、硅、磷、硫、氯、氩、钾、钙。它们的简写是H、He、Li、Be、B、C、N、O、F、Ne、Na、Mg、.Al.、Si.、P.、S、.Cl、Ar、K、Ca。
前400年,希腊哲学家德谟克列特提出原子的概念。
1803年,英国物理学家约翰·道尔顿提出
原子说
。
1833年,英国物理学家法拉第提出
法拉第电解定律
,表明原子带电,且电可能以不连续的粒子存在。
1874年,司通内建议电解过程被交换的粒子叫做电子。
1879年,克鲁克斯从放电管(高电压低气压的真空管)中发现
阴极射线
。
1897年,英国物理学家汤姆生证实阴极射线即阴极材料上释放出的
高速电子流
,并测量出电子的荷质比。e/m=1.7588×108 库仑/克
1909年,美国物理学家密立根的
油滴实验
测出电子之带电量,并强化了“电子是粒子”的概念。
1911年,英国物理学家卢瑟福的
α粒子散射实验
,发现原子有核,且
原子核
带正电、质量极大、体积很小。其条利用带正电的α粒子(即氦核)来轰击金属箔,发现大部分(99.9%)粒子,穿过金属箔后仍保持原来的运动方向,但有绝少数α粒子发生了较大角度的偏转。在分析实验结果的基础上,卢瑟福提出了原子的核式结构模型:在原子的中心有一个很小的原子核,原子核的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核运动,就像行星绕太阳运动那样。
1913年,丹麦科学家玻尔改进了卢瑟福的原子核式结构模型,认为电子只能在原子内的一些特定的轨道上运动。
1913年,英国物理学家莫塞莱分析了元素的X射线
标识谱
,建立
原子序数
的概念。
1913年,汤姆生之质谱仪测量质量数 , 并发现同位素。
1919年,卢瑟福发现
质子
。其利用α粒子撞击氮原子核与发现质子,接著又用α粒子撞击棚 (B) 、氟 (F) 、铝 (A1) 、磷 (P) 核等也都能产生质子,故推论“质子”为元素之原子核共有成分。
1932年,英国物理学家乍得威克利用α粒子撞击铍原子核,发现了
中子
。
1935年,日本物理学家汤川秀树建立了
介子
理论。
原子趣闻:人体中每秒有40万个放射性原子蜕变为其他原子。人体每个细胞平均有90万亿个原子,是40万个原子的22500万倍。