在一个多重线性回归模型中,响应变量取决于多个预测变量。您可以使用或不使用
LinearModel
对象来执行多重线性回归,也可以使用
回归学习器
来执行多重线性回归。
为了提高在中低维数据集上的准确度,可以使用
fitlm
拟合线性回归模型。
为了减少在高维数据集上的计算时间,可以使用
fitrlinear
拟合线性回归模型。
回归学习器
|
使用有监督机器学习训练回归模型来预测数据
|
LinearModel
和
CompactLinearModel
函数
创建
LinearModel
对象
创建
CompactLinearModel
对象
compact
|
Compact linear regression model
|
添加或删除线性模型中的项
addTerms
|
Add terms to linear regression model
|
removeTerms
|
Remove terms from linear regression model
|
step
|
Improve linear regression model by adding or removing terms
|
预测响应
feval
|
Predict responses of linear regression model using one input for each
predictor
|
predict
|
Predict responses of linear regression model
|
random
|
Simulate responses with random noise for linear regression model
|
计算线性模型
anova
|
Analysis of variance for linear regression model
|
coefCI
|
Confidence intervals of coefficient estimates of linear regression
model
|
coefTest
|
Linear hypothesis test on linear regression model coefficients
|
dwtest
|
Durbin-Watson test with linear regression model object
|
partialDependence
|
Compute partial dependence
(自 R2020b 起)
|
可视化线性模型和摘要统计量
plot
|
Scatter plot or added variable plot of linear regression model
|
plotAdded
|
Added variable plot of linear regression model
|
plotAdjustedResponse
|
Adjusted response plot of linear regression model
|
plotDiagnostics
|
Plot observation diagnostics of linear regression model
|
plotEffects
|
Plot main effects of predictors in linear regression model
|
plotInteraction
|
Plot interaction effects of two predictors in linear regression
model
|
plotPartialDependence
|
Create partial dependence plot (PDP) and individual conditional expectation
(ICE) plots
|
plotResiduals
|
Plot residuals of linear regression model
|
plotSlice
|
Plot of slices through fitted linear regression surface
|
收集线性模型的属性
gather
|
Gather properties of
Statistics and Machine Learning Toolbox
object from GPU
(自 R2020b 起)
|
RegressionLinear
和
RegressionPartitionedLinear
函数
fitrlinear
|
Fit linear regression model to high-dimensional data
|
使用
RegressionLinear
对象
predict
|
Predict response of linear regression model
|
lime
|
Local interpretable model-agnostic explanations (LIME)
(自 R2020b 起)
|
loss
|
Regression loss for linear regression models
|
partialDependence
|
Compute partial dependence
(自 R2020b 起)
|
plotPartialDependence
|
Create partial dependence plot (PDP) and individual conditional expectation
(ICE) plots
|
shapley
|
Shapley values
(自 R2021a 起)
|
selectModels
|
Select fitted regularized linear regression models
|
使用
RegressionPartitionedLinear
对象
kfoldLoss
|
Regression loss for cross-validated linear regression model
|
kfoldPredict
|
Predict responses for observations in cross-validated linear regression
model
|
不使用对象的线性回归
拟合和计算线性回归
dwtest
|
Durbin-Watson test with residual inputs
|
invpred
|
Inverse prediction
|
linhyptest
|
Linear hypothesis test
|
plsregress
|
Partial least-squares (PLS) regression
|
regress
|
多重线性回归
|
regstats
|
Regression diagnostics
|
relieff
|
Rank importance of predictors using ReliefF or RReliefF algorithm
|
robustfit
|
Fit robust linear regression
|
stepwisefit
|
Fit linear regression model using stepwise regression
|
多项式曲线拟合
准备数据
x2fx
|
Convert predictor matrix to design matrix
|
dummyvar
|
Create dummy variables
|
交互式工具
polytool
|
Interactive polynomial fitting
|
robustdemo
|
Interactive robust regression
|
rsmdemo
|
Interactive response surface demonstration
|
rstool
|
Interactive response surface modeling
|
stepwise
|
Interactive stepwise regression
|
线性回归简介