Sulfur-containing heterocyclic compounds are widely applied in many areas such as drugs, molecular devices and materials,
etc
., so their synthesis methods have attracted much attention. The key step for the synthesis of sulfur-containing heterocycles is the construction of C—S bond, which is generally realized by C—H bond functionalization or C—X bond coupling reaction with sulfur-containing organic or inorganic substances. Elemental sulfur is cheap, available and stable, and it is an excellent sulfur atom donor for the synthesis of sulfur-containing heterocycles. Therefore, the synthesis of sulfur-containing heterocycles from elemental sulfur has become a research hotspot. Herein, the recent research progress of synthesis of sulfur-containing heterocyclic employing sulfur as sulfur-source is reviewed.
Key words:
sulfur-containing heterocycle,
elemental sulfur,
C—S bond construction,
multi-component cascade reaction
肖立伟, 刘光仙, 任萍, 吴彤桐, 卢玉伟, 孔洁. 单质硫: 合成含硫杂环的优质硫源[J].
有机化学
, 2022, 42(4): 1002-1012.
Liwei Xiao, Guangxian Liu, Ping Ren, Tongtong Wu, Yuwei Lu, Jie Kong. Elemental Sulfur: An Excellent Sulfur-Source for Synthesis of Sulfur-Containing Heterocyclics[J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1002-1012.
导出引用
EndNote
|
Reference Manager
|
ProCite
|
BibTeX
|
RefWorks
Entry
|
R
2
-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield/%
|
Ref.
|
1
|
Aldehyde
|
2-Arylbenzothiazole
|
CuCl
2
-Phen/K
2
CO
3
|
H
2
O, 100 ℃
|
52~96
|
[
7
]
|
2
|
Benzylchloride
|
2-Arylbenzothiazole
|
Cu(OAc)
2/
Na
2
CO
3
|
DMSO, 130 ℃
|
53~98
|
[
8
]
|
3
|
Benzylamine
|
2-Arylbenzothiazole
|
Cu(OAc)
2
/DABCO
|
DMSO, 100 ℃
|
10~90
|
[
9
]
|
4
|
Benzylamine
|
2-Arylbenzothiazole
|
CuCl-Phen
|
H
2
O, 100 ℃
|
60~88
|
[
10
]
|
5
|
Terminalalkyne
|
2-Benzylbenzothiazole
|
CuTC/DBU
|
MeCN/H
2
O, 130 ℃
|
45~84
|
[
11
]
|
6
|
Terminalalkyne
|
2-Arylbenzothiazole
|
CuI-Phen/K
2
CO
3
|
DMSO, 110 ℃
|
62~90
|
[
11
]
|
7
|
N
-Tosylhydrazone
|
2-Arylbenzothiazole
|
CuSCN/DBU
|
DMSO, 110 ℃
|
63~84
|
[
12
]
|
8
|
N
-Tosylhydrazone
|
2-Benzylbenzothiazole
|
CuI, CsF/DABCO
|
MeCN, 130 ℃
|
57~70
|
[
12
]
|
9
|
Quaternaryammonium
|
2-Alkylbenzothiazole
|
KOH
|
H
2
O, 140 ℃
|
74~95
|
[
13
]
|
Entry
|
R
2
-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield/%
|
Ref.
|
1
|
Aldehyde
|
2-Arylbenzothiazole
|
CuCl
2
-Phen/K
2
CO
3
|
H
2
O, 100 ℃
|
52~96
|
[
7
]
|
2
|
Benzylchloride
|
2-Arylbenzothiazole
|
Cu(OAc)
2/
Na
2
CO
3
|
DMSO, 130 ℃
|
53~98
|
[
8
]
|
3
|
Benzylamine
|
2-Arylbenzothiazole
|
Cu(OAc)
2
/DABCO
|
DMSO, 100 ℃
|
10~90
|
[
9
]
|
4
|
Benzylamine
|
2-Arylbenzothiazole
|
CuCl-Phen
|
H
2
O, 100 ℃
|
60~88
|
[
10
]
|
5
|
Terminalalkyne
|
2-Benzylbenzothiazole
|
CuTC/DBU
|
MeCN/H
2
O, 130 ℃
|
45~84
|
[
11
]
|
6
|
Terminalalkyne
|
2-Arylbenzothiazole
|
CuI-Phen/K
2
CO
3
|
DMSO, 110 ℃
|
62~90
|
[
11
]
|
7
|
N
-Tosylhydrazone
|
2-Arylbenzothiazole
|
CuSCN/DBU
|
DMSO, 110 ℃
|
63~84
|
[
12
]
|
8
|
N
-Tosylhydrazone
|
2-Benzylbenzothiazole
|
CuI, CsF/DABCO
|
MeCN, 130 ℃
|
57~70
|
[
12
]
|
9
|
Quaternaryammonium
|
2-Alkylbenzothiazole
|
KOH
|
H
2
O, 140 ℃
|
74~95
|
[
13
]
|
2-卤代苯胺和硫为原料合成2-取代苯并噻唑a
Table 1.
Synthesis of 2-substituted benzothiazole from 2-haloaniline and sulfur
Entry
|
Ar-FG
|
Product
|
Cat.
|
Reaction condition
|
Yield/%
|
Ref.
|
1
|
Methylaromatic
|
2-Arylbenzothiazole
|
—
|
275 ℃
|
15~74
|
[
14
]
|
2
|
Methylaromatic
|
2-Arylnaphthothiazole
|
—
|
275 ℃
|
41~50
|
[
14
]
|
3
|
2-Methylarene
|
2-Heteroarylbenzothiazole
|
NH
4
I
|
NMP, air, 160 ℃
|
37~87
|
[
15
]
|
4
|
Arylaldehyde
|
2-Arylnaphtho[2,1-
d
]thiazole
|
NH
4
I/4 Å MS
|
DMSO/PhCl, 140 ℃
|
61~98
|
[
16
]
|
5
|
Arylaldehyde
|
2-Arylbenzothiazole
|
KI
|
O
2
, NMP, 150 ℃
|
40~79
|
[
16
]
|
6
|
Styrene
|
2-Benzylbenzothiazole
|
NH
4
I
|
NMP, air, 140 ℃
|
63~88
|
[
17
]
|
7
|
Arylacetylene
|
2-Benzylbenzothiazole
|
NH
4
I
|
NMP, air, 140 ℃
|
57~81
|
[
17
]
|
8
|
Ether
|
2-Aryl, alkylbenzothiazole
|
TBHP
b
/KI
|
DMSO, air, 130 ℃
|
41~81
|
[
18
]
|
9
|
Aliphaticamine
|
2-Aryl, alkylbenzothiazole
|
sealed tube
|
DMSO, 140 ℃
|
42~90
|
[
19
]
|
10
|
Acetophenone
|
2-Arylbenzothiazole
|
I
2
, TBAI
c
|
DMSO/PhCl, 140 ℃
|
40~81
|
[
20
]
|
11
|
Acetophenone
|
2-Aroylbenzothiazole
|
I
2
,
|
DMSO/PhCl, 140 ℃
|
42~78
|
[
21
]
|
12
|
Isatin
|
2-(2'-Aminophenyl)benzothiaole
|
KI/4 Å MS
|
DMSO, 120 ℃
|
60~85
|
[
22
]
|
Entry
|
Ar-FG
|
Product
|
Cat.
|
Reaction condition
|
Yield/%
|
Ref.
|
1
|
Methylaromatic
|
2-Arylbenzothiazole
|
—
|
275 ℃
|
15~74
|
[
14
]
|
2
|
Methylaromatic
|
2-Arylnaphthothiazole
|
—
|
275 ℃
|
41~50
|
[
14
]
|
3
|
2-Methylarene
|
2-Heteroarylbenzothiazole
|
NH
4
I
|
NMP, air, 160 ℃
|
37~87
|
[
15
]
|
4
|
Arylaldehyde
|
2-Arylnaphtho[2,1-
d
]thiazole
|
NH
4
I/4 Å MS
|
DMSO/PhCl, 140 ℃
|
61~98
|
[
16
]
|
5
|
Arylaldehyde
|
2-Arylbenzothiazole
|
KI
|
O
2
, NMP, 150 ℃
|
40~79
|
[
16
]
|
6
|
Styrene
|
2-Benzylbenzothiazole
|
NH
4
I
|
NMP, air, 140 ℃
|
63~88
|
[
17
]
|
7
|
Arylacetylene
|
2-Benzylbenzothiazole
|
NH
4
I
|
NMP, air, 140 ℃
|
57~81
|
[
17
]
|
8
|
Ether
|
2-Aryl, alkylbenzothiazole
|
TBHP
b
/KI
|
DMSO, air, 130 ℃
|
41~81
|
[
18
]
|
9
|
Aliphaticamine
|
2-Aryl, alkylbenzothiazole
|
sealed tube
|
DMSO, 140 ℃
|
42~90
|
[
19
]
|
10
|
Acetophenone
|
2-Arylbenzothiazole
|
I
2
, TBAI
c
|
DMSO/PhCl, 140 ℃
|
40~81
|
[
20
]
|
11
|
Acetophenone
|
2-Aroylbenzothiazole
|
I
2
,
|
DMSO/PhCl, 140 ℃
|
42~78
|
[
21
]
|
12
|
Isatin
|
2-(2'-Aminophenyl)benzothiaole
|
KI/4 Å MS
|
DMSO, 120 ℃
|
60~85
|
[
22
]
|
苯胺/萘胺和硫为原料合成2-取代苯并噻唑a
Table 2.
Synthese of 2-substituted benzothiazoles from anilines/naphthylamine and sulfur
Entry
|
Ar-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield%
|
Ref.
|
1
|
Methylhetarene
|
2-Hetarylbenzothiazole
|
—
|
120 ℃
|
37~85
|
[
25
]
|
2
|
Methylhetarene
|
2-Hetarylbenzothiazole
|
NH
4
I
|
Sulfolane, 175 ℃
|
9~60
|
[
26
]
|
3
|
Benzaldehyde
|
2-Arylbenzothiazole
|
NMM
|
130 ℃
|
60~80
|
[
27
]
|
4
|
Benzylamine
|
2-Arylbenzothiazole
|
Pyridine
|
100 ℃
|
61~80
|
[
28
]
|
5
|
Aliphatic amine
|
2-Arylbenzothiazole
|
—
|
130 ℃
|
52~80
|
[
29
]
|
6
|
Acetophenone
|
2-Aroylbenzothiazole
|
NMM
|
120 ℃
|
52~92
|
[
30
]
|
7
|
Arylacetic acid
|
2-Arylbenzothiazole
|
NMM
|
110 ℃
|
46~75
|
[
31
]
|
8
|
Benzylic alcohol
|
2-Arylbenzothiazole
|
FeCl
3
/KHCO
3
/NH
4
I
|
NMP, 160 ℃
|
25~80
|
[
32
]
|
Entry
|
Ar-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield%
|
Ref.
|
1
|
Methylhetarene
|
2-Hetarylbenzothiazole
|
—
|
120 ℃
|
37~85
|
[
25
]
|
2
|
Methylhetarene
|
2-Hetarylbenzothiazole
|
NH
4
I
|
Sulfolane, 175 ℃
|
9~60
|
[
26
]
|
3
|
Benzaldehyde
|
2-Arylbenzothiazole
|
NMM
|
130 ℃
|
60~80
|
[
27
]
|
4
|
Benzylamine
|
2-Arylbenzothiazole
|
Pyridine
|
100 ℃
|
61~80
|
[
28
]
|
5
|
Aliphatic amine
|
2-Arylbenzothiazole
|
—
|
130 ℃
|
52~80
|
[
29
]
|
6
|
Acetophenone
|
2-Aroylbenzothiazole
|
NMM
|
120 ℃
|
52~92
|
[
30
]
|
7
|
Arylacetic acid
|
2-Arylbenzothiazole
|
NMM
|
110 ℃
|
46~75
|
[
31
]
|
8
|
Benzylic alcohol
|
2-Arylbenzothiazole
|
FeCl
3
/KHCO
3
/NH
4
I
|
NMP, 160 ℃
|
25~80
|
[
32
]
|
硝基苯和硫为原料合成2-取代苯并噻唑a
Table 3.
Synthese of 2-substituted benzothiazoles from nitrobenzenes and sulfur
Entry
|
Ar
2
-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield/%
|
Ref..
|
1
|
Arylmethylbromide
|
3,5-Diaryl-1,2,4-thiadiazole
|
LiO
t
Bu
|
Toluene, 140 ℃
|
45~67
|
[
39
]
|
2
|
Methylketone
|
3-Aryl-5-acyl-1,2,4-thiadiazole
|
PaCl
2
/K
2
HPO
4
|
DMSO, 130 ℃
|
35~75
|
[
40
]
|
3
|
2-Methylquinoline
|
3,5-Diaryl-1,2,4-thiadiazole
|
K
3
PO
4
|
DMSO, 120 ℃
|
42~93
|
[
41
]
|
4
|
Aromaticaldehyde
|
3,5-Diaryl-1,2,4-thiadiazole
|
K
3
PO
4
|
DMSO, 120 ℃
|
48~63
|
[
41
]
|
Entry
|
Ar
2
-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield/%
|
Ref..
|
1
|
Arylmethylbromide
|
3,5-Diaryl-1,2,4-thiadiazole
|
LiO
t
Bu
|
Toluene, 140 ℃
|
45~67
|
[
39
]
|
2
|
Methylketone
|
3-Aryl-5-acyl-1,2,4-thiadiazole
|
PaCl
2
/K
2
HPO
4
|
DMSO, 130 ℃
|
35~75
|
[
40
]
|
3
|
2-Methylquinoline
|
3,5-Diaryl-1,2,4-thiadiazole
|
K
3
PO
4
|
DMSO, 120 ℃
|
42~93
|
[
41
]
|
4
|
Aromaticaldehyde
|
3,5-Diaryl-1,2,4-thiadiazole
|
K
3
PO
4
|
DMSO, 120 ℃
|
48~63
|
[
41
]
|
芳基脒和硫为原料合成多取代1,2,4-噻二唑
Table 4.
Synthesis of polysubstituted 1,2,4-thiadiazoles from arylamidines and sulfur
Entry
|
Substrate
1
|
Substrate
2
|
Cat./base
|
Reaction condition
|
Yield/%
|
Ref.
|
1
|
Ketone
|
Cyanoacetone
|
Piperidine
|
EtOH, 55~65 ℃
|
8~86
|
[
46
]
|
2
|
Ketone, aldehyde
|
Dicyanomethane
|
Imidazole
|
DMF, 60 ℃, N
2
|
27~88
|
[
47
]
|
3
|
Ketone, aldehyde
|
Cyanomethylene
|
Morpholine
|
PEG-600, U.S.
|
29~98
|
[
48
]
|
4
|
Cycloketone
|
Ethylcyanoacetate
|
Morpholine
|
M.W., 120 ℃
|
22~87
|
[
49
]
|
5
|
Ketone, aldehyde
|
Malononitrile
|
ZnO
|
100 ℃
|
37~86
|
[
50
]
|
6
|
Ketone
|
Malononitrile
|
NaAlO
2
|
EtOH, 60 ℃
|
26~97
|
[
51
]
|
7
|
Arylacetaldehyde
|
1,3-Diketone
|
K
2
CO
3
/KHCO
3
|
DMSO, 95 ℃
|
36~84
|
[
52
]
|
8
|
Chalcone
|
Arylacetonitrile
|
DBU
|
DMSO/DABCO, 80 ℃
|
43~75
|
[
53
]
|
9
|
Arylmethylketone
|
Arylmethylketone
|
Anline/
p
-TsA
|
120 ℃, Ar
|
48~88
|
[
54
]
|
Entry
|
Substrate
1
|
Substrate
2
|
Cat./base
|
Reaction condition
|
Yield/%
|
Ref.
|
1
|
Ketone
|
Cyanoacetone
|
Piperidine
|
EtOH, 55~65 ℃
|
8~86
|
[
46
]
|
2
|
Ketone, aldehyde
|
Dicyanomethane
|
Imidazole
|
DMF, 60 ℃, N
2
|
27~88
|
[
47
]
|
3
|
Ketone, aldehyde
|
Cyanomethylene
|
Morpholine
|
PEG-600, U.S.
|
29~98
|
[
48
]
|
4
|
Cycloketone
|
Ethylcyanoacetate
|
Morpholine
|
M.W., 120 ℃
|
22~87
|
[
49
]
|
5
|
Ketone, aldehyde
|
Malononitrile
|
ZnO
|
100 ℃
|
37~86
|
[
50
]
|
6
|
Ketone
|
Malononitrile
|
NaAlO
2
|
EtOH, 60 ℃
|
26~97
|
[
51
]
|
7
|
Arylacetaldehyde
|
1,3-Diketone
|
K
2
CO
3
/KHCO
3
|
DMSO, 95 ℃
|
36~84
|
[
52
]
|
8
|
Chalcone
|
Arylacetonitrile
|
DBU
|
DMSO/DABCO, 80 ℃
|
43~75
|
[
53
]
|
9
|
Arylmethylketone
|
Arylmethylketone
|
Anline/
p
-TsA
|
120 ℃, Ar
|
48~88
|
[
54
]
|
通过Gewald反应合成多取代2-氨基噻吩
Table 5.
Synthesis of multisubstituted 2-aminothiophenes via Gewald reaction
Entry
|
R
2
-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield%
|
Ref.
|
1
|
Arylaldehyde
|
2-Arylbenzothienothiazole
|
CuBr/Li
2
CO
3
|
DMSO, 120 ℃
|
48~91
|
[
67
]
|
2
|
Arylacetylene
|
2-Arylbenzothienothiazole
b
|
CuOTf/TBD
|
DMSO/hexane, 120 ℃
|
44~83
|
[
68
]
|
3
|
Arylaldehyde
|
2-Arylbenzothienothiazole
b
|
CuCl/TBD
|
DMSO/hexane, 120 ℃
|
41~90
|
[
68
]
|
4
|
Methyl-
N
-heteroarene
|
2-Arylbenzothienothiazole
|
Cs
2
CO
3
|
DMSO, 120 ℃
|
22~62
|
[
69
]
|
5
|
Arylacetic acid or ester
|
2-Arylbenzothienothiazole
|
Li
2
CO
3
|
DMSO, 120 ℃
|
65~92
|
[
70
]
|
6
|
Isothiocyanate
|
2-Aminobenzothienothiazole
|
KSCN/Li
2
CO
3
|
DMSO, 120 ℃
|
32~82
|
[
71
]
|
7
|
Acetophenone
|
2-Aroylthienothiazole
|
TBD
|
DMSO, 120 ℃
|
31~87
|
[
72
]
|
Entry
|
R
2
-FG
|
Product
|
Cat./base
|
Reaction condition
|
Yield%
|
Ref.
|
1
|
Arylaldehyde
|
2-Arylbenzothienothiazole
|
CuBr/Li
2
CO
3
|
DMSO, 120 ℃
|
48~91
|
[
67
]
|
2
|
Arylacetylene
|
2-Arylbenzothienothiazole
b
|
CuOTf/TBD
|
DMSO/hexane, 120 ℃
|
44~83
|
[
68
]
|
3
|
Arylaldehyde
|
2-Arylbenzothienothiazole
b
|
CuCl/TBD
|
DMSO/hexane, 120 ℃
|
41~90
|
[
68
]
|
4
|
Methyl-
N
-heteroarene
|
2-Arylbenzothienothiazole
|
Cs
2
CO
3
|
DMSO, 120 ℃
|
22~62
|
[
69
]
|
5
|
Arylacetic acid or ester
|
2-Arylbenzothienothiazole
|
Li
2
CO
3
|
DMSO, 120 ℃
|
65~92
|
[
70
]
|
6
|
Isothiocyanate
|
2-Aminobenzothienothiazole
|
KSCN/Li
2
CO
3
|
DMSO, 120 ℃
|
32~82
|
[
71
]
|
7
|
Acetophenone
|
2-Aroylthienothiazole
|
TBD
|
DMSO, 120 ℃
|
31~87
|
[
72
]
|
酮肟酸(酯)为原料合成苯并噻吩并噻唑a
Table 6.
Synthese of benzo[4,5]thieno[3,2-d]thiazole from oxime esters
Entry
|
R
2
-FG
|
Product
|
Cat./acid
|
Reaction condition
|
Yield%
|
Ref.
|
1
|
Alkyne
|
Thieno[2,3-
b
]indole
|
HCl
|
DMF, 150 ℃
|
31~82
|
[
77
]
|
2
|
Alkene
|
Thieno[2,3-
b
]indole
|
HCl/HOAc
|
DMF, 150 ℃
|
30~78
|
[
77
]
|
4
|
Acetophenone
|
3-Aryl thieno[2,3-
b
]indole
|
HI/phenylalanine
|
CF
3
Ph/dioxane, 130 ℃
|
28~71
|
[
78
]
|
5
|
Acetophenone
|
2-Aryl thieno[2,3-
b
]indole
|
HOAc
|
DMF, 150 ℃
|
37~84
|
[
78
]
|
3
|
Cyclohexanone
|
Benzothieno[2,3-
b
]indole
|
PdI
2
/CPDO
a
|
o
-Cl
2
C
6
H
4
, 125 ℃
|
38~72
|
[
79
]
|
6
|
Cyclohexanone
|
Benzothieno[2,3-
b
]indole
|
I
2
|
NMP
c
, 150 ℃
|
28~83
|
[
80
]
|
7
|
Cyclohexanone
|
3-Arylindole
|
BF
3
/DPE
b
|
DMF, 150 ℃
|
33~89
|
[
80
]
|
8
|
Cyclohexanone
|
3-Arylindole
|
IBr
|
DPE/DMA
d
, 150 ℃
|
60~93
|
[
80
]
|
Entry
|
R
2
-FG
|
Product
|
Cat./acid
|
Reaction condition
|
Yield%
|
Ref.
|
1
|
Alkyne
|
Thieno[2,3-
b
]indole
|
HCl
|
DMF, 150 ℃
|
31~82
|
[
77
]
|
2
|
Alkene
|
Thieno[2,3-
b
]indole
|
HCl/HOAc
|
DMF, 150 ℃
|
30~78
|
[
77
]
|
4
|
Acetophenone
|
3-Aryl thieno[2,3-
b
]indole
|
HI/phenylalanine
|
CF
3
Ph/dioxane, 130 ℃
|
28~71
|
[
78
]
|
5
|
Acetophenone
|
2-Aryl thieno[2,3-
b
]indole
|
HOAc
|
DMF, 150 ℃
|
37~84
|
[
78
]
|
3
|
Cyclohexanone
|
Benzothieno[2,3-
b
]indole
|
PdI
2
/CPDO
a
|
o
-Cl
2
C
6
H
4
, 125 ℃
|
38~72
|
[
79
]
|
6
|
Cyclohexanone
|
Benzothieno[2,3-
b
]indole
|
I
2
|
NMP
c
, 150 ℃
|
28~83
|
[
80
]
|
7
|
Cyclohexanone
|
3-Arylindole
|
BF
3
/DPE
b
|
DMF, 150 ℃
|
33~89
|
[
80
]
|
8
|
Cyclohexanone
|
3-Arylindole
|
IBr
|
DPE/DMA
d
, 150 ℃
|
60~93
|
[
80
]
|
吲哚为原料合成噻吩并[2,3-b]吲哚
Table 7.
Synthesis of thieno[2,3-b]indoles from indoles
(a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
doi:
10.1021/cr100347k
pmid:
21391564
(b) Yang, W.; Zhang, M.; Chen, W.; Yang, X.; Feng, J. Chin. J. Org. Chem. 2020, 40, 4060. (in Chinese)
doi:
10.6023/cjoc202005039
pmid:
21391564
(a) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
doi:
10.1039/C4CS00239C
pmid:
33528480
(b) Sundaravelu, N.; Sangeetha, S.; Sekar, G. Org. Biomol. Chem. 2021, 19, 1459.
doi:
10.1039/d0ob02320e
pmid:
33528480
(a) Nguyena, T. B. Adv. Synth. Catal. 2017, 359, 1066.
doi:
10.1002/adsc.201601329
(d) Fan, R.; Tan, C.; Liu, Y.; Wei, Y.; Zhao, X.; Liu, X.; Tan, J.; Yoshida, H. Chin. Chem. Lett. 2021, 32, 299.
doi:
10.1016/j.cclet.2020.06.003
(e) Cheng, H.; Guo, P.; Chen, B.; Yao, J.; Ma, J.; Hu, W.; Ji, H. Chin. J. Org. Chem. 2021, 41, 94. (in Chinese)
doi:
10.6023/cjoc202006032
Wang, R.; Ding, Y. l.; Liu, H.; Peng, S.; Ren, J.; Li, L. Tetrahedron Lett. 2014, 55, 945.
doi:
10.1016/j.tetlet.2013.12.054
Xu, H.; Luo, C.; Li, Z.; Xiang, H.; Zhou, X. J.
Heterocycl. Chem
. 2015, 53, 120.
Huang, Y.; Yan, D.; Wang, X.; Zhou, P.; Wu, W.; Jiang, H. Chem. Commun. 2018, 54, 1742.
doi:
10.1039/C7CC09855C
Huang, Y.; Zhou, P.; Wu, W.; Jiang, H. J. Org. Chem. 2018, 83, 2460.
doi:
10.1021/acs.joc.7b03118
Pan, L.; Yu, L.; Wu, Z.; Li, Z.; Xiang, H.; Zhou, X. RSC Adv. 2015, 46, 27775.
Zhang, L. F.; Ni, Z. H.; Li, D. Y.; Qin, Z. H.; Wei, X. Y. Chin. Chem. Lett. 2012, 23, 281.
doi:
10.1016/j.cclet.2011.12.004
Li, G.; Xie, H.; Chen, J.; Guo, Y.; Deng, G. J. Green Chem. 2017, 19, 4043.
doi:
10.1039/C7GC01932G
Che, X.; Jiang, J.; Xiao, F.; Huang, H.; Deng, G. J. Org. Lett. 2017, 19, 4576.
doi:
10.1021/acs.orglett.7b02168
Deng, G.; Jiang, J.; Li, G.; Zhang, F.; Xie, H. Adv. Synth. Catal. 2018, 360, 1622.
doi:
10.1002/adsc.201701560
Zhang, J.; Zhao, X.; Liu, P.; Sun, P. J. Org. Chem. 2019, 84, 12596.
doi:
10.1021/acs.joc.9b02145
pmid:
31502839
Zhu, X.; Zhou, F.; Yang, Y.; Deng, G.; Liang, Y. ACS Omega 2020, 5, 22, 13136.
Liu, Y.; Yuan, X.; Guo, X.; Zhang, X.; Chen, B. Tetrahedron 2018, 74, 6057.
doi:
10.1016/j.tet.2018.08.047
Huynh, T. V.; Doan, K. V.; Luong, N. T. K.; Nguyen, D. T. P.; Doan, S. H.; Nguyen, T. T.; Phan, N. T. S. RSC Adv. 2020, 10, 18423.
doi:
10.1039/D0RA01750G
Singh, M.; Vaishali, Paul, A. K.; Singh, V. Org. Biomol. Chem. 2020, 18, 4459.
doi:
10.1039/D0OB00888E
Zhu, X.; Yang, Y.; Xiao, G.; Song, J.; Liang, Y.; Deng, G. Chem. Commun. 2017, 53, 11917.
doi:
10.1039/C7CC07366F
Fu, R. G.; Wang, Y.; Xia, F.; Zhang, H. L.; Sun, Y.; Yang, D. W.; Wang, Y. W.; Yin, P. J. Org. Chem. 2019, 84, 12237.
doi:
10.1021/acs.joc.9b02032
Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2013, 15, 4218.
doi:
10.1021/ol401944a
pmid:
23924277
Teramoto, M.; Imoto, M.; Takeda, M.; Mizuno, T.; Nomoto, A.; Ogawa, A. J. Org. Chem. 2020, 85, 15213.
doi:
10.1021/acs.joc.0c02072
Nguyen, L. A.; Ngo, Q. A.; Retailleau, P.; Nguyen, T. B. Green Chem. 2017, 19, 4289.
doi:
10.1039/C7GC01825H
Nguyen, T. B.; Ermolenko, L.; Retailleau, P.; Al-Mourabit, A. Angew. Chem.,
Int. Ed.
2014, 53, 13808.
doi:
10.1002/anie.201408397
Tong, Y.; Pan, Q.; Jiang, Z.; Miao, D.; Shi, X.; Han, S. Tetrahedron Lett. 2014, 55, 5499.
doi:
10.1016/j.tetlet.2014.08.037
Nguyen, T. B.; Pasturaud, K.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2015, 17, 2562.
doi:
10.1021/acs.orglett.5b01182
pmid:
25929738
Guntreddi, T.; Vanjari, R.; Singh, K. N. Org. Lett. 2015, 17, 976.
doi:
10.1021/acs.orglett.5b00079
Xing, Q.; Ma, Y.; Xie, H.; Xiao, F.; Zhang, F.; Deng, G. J. J. Org. Chem. 2019, 84, 1238.
doi:
10.1021/acs.joc.8b02619
Xu, Z.; Huang, H.; Chen, H.; Deng, G. J. Org. Chem. Front. 2019, 6, 3060.
doi:
10.1039/C9QO00592G
Wang, X.; Qiu, X.; Wei, J.; Liu, J.; Song, S.; Wang, W.; Jiao, N. Org. Lett. 2018, 20, 2632.
doi:
10.1021/acs.orglett.8b00840
Ni, P.; Tan, J.; Li, R.; Huang, H.; Zhang, F.; Deng, G. J. RSC Adv. 2020, 10, 3931.
doi:
10.1039/C9RA09656F
Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236.
doi:
10.1002/adsc.201800693
Childers, K. K.; Haidle, A. M.; Machacek, M. R.; Rogers, J. P.; Romeo, E. Tetrahedron Lett, 2013, 54, 2506.
doi:
10.1016/j.tetlet.2013.03.014
Ma, X.; Yu, X.; Huang, H.; Zhou, Y.; Song, Q. Org. Lett. 2020, 22, 5284.
doi:
10.1021/acs.orglett.0c01275
Zhou, Z.; Liu, M.; Sun, S.; Yao, E.; Liu, S.; Wu, Z.; Yu, J. T.; Jiang, Y.; Cheng, J. Terahedron Lett. 2017, 58, 2571.
doi:
10.1016/j.tetlet.2017.05.061
Wang, Z.; Xie, H.; Xiao, F.; Guo, Y.; Huang, H.; Deng, G. J. Eur. J. Org. Chem. 2017, 2017, 1604.
doi:
10.1002/ejoc.201700148
Xie, H.; Cai, J.; Wang, Z.; Huang, H.; Deng, G. J. Org. Lett. 2016, 18, 2196.
doi:
10.1021/acs.orglett.6b00806
Hagen, H.; Kohler, R. D.; Liebigs, H. F. Ann. Chem. 1980, 1216.
(a) Zhou, Z.; Liu, Y.; Chen, J.; Yao, E.; Cheng, J. Org. Lett. 2016, 18, 5268.
doi:
10.1021/acs.orglett.6b02583
Huang, X. G.; Liu, J.; Ren, J.; Wang, T.; Chen, W.; Zeng, B. B. Tetrahedron, 2011, 67, 6202.
doi:
10.1016/j.tet.2011.06.061
Akbarzadeh, A.; Dekamin, M. G. Green Chem. Lett. Rev. 2017, 10, 315.
doi:
10.1080/17518253.2017.1380234
Treu, M.; Karner, T.; Kousek, R.; Berger, H.; Mayer, M.; McConnell, D. B.; Stadler, A. J. Comb. Chem. 2008, 10, 863.
doi:
10.1021/cc800081b
Tayebee, R.; Ahmadi, S. J.; Seresht, E. R.; Javadi, F.; Yasemi, M. A.; Hosseinpour, M.; Maleki, B. Ind. Eng. Chem. Res. 2012, 51, 14577.
doi:
10.1021/ie301737h
Bai, R.; Liu, P.; Yang, J.; Liu, C.; Gu, Y. ACS Sustainable Chem. Eng. 2015, 3, 1292.
doi:
10.1021/sc500763q
Wang, Z.; Qu, Z.; Xiao, F.; Huang, H.; Deng, G. J. Adv. Synth. Catal. 2018, 360, 796.
doi:
10.1002/adsc.201701332
Nguyen, T. T. T.; Le, V A. Adv. Synth. Catal. 2019, 362, 160.
doi:
10.1002/adsc.201901235
Nguyen, T. B.; Retailleau, P. Green Chem. 2018, 20, 387.
doi:
10.1039/C7GC03437G
Chithiravel, R.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. RSC Adv. 2015, 5, 86414.
doi:
10.1039/C5RA17829K
Han, Y.; Tang, W. Q.; Yan, C. Tetrahedron Lett. 2014, 55, 1441.
Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Org. Lett. 2014, 16, 6156.
doi:
10.1021/ol503015b
(a) Kasano, Y.; Okada, A.; Hiratsuka, D.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. Tetrahedron 2006, 62, 537.
doi:
10.1016/j.tet.2005.10.024
Nguyen, T, B.; Retailleau, P. Org. Lett. 2017, 19, 4858.
doi:
10.1021/acs.orglett.7b02321
pmid:
28840729
Jiang, P.; Che, X.; Liao, Y.; Huang, H.; Deng, G. J. RSC Adv. 2016, 47, 41751.
(a) Higashino, T.; Ueda, A.; Yoshida, J.; Mori, H. Chem. Commun. 2017, 53, 3426.
doi:
10.1039/C7CC00784A
Nagahora, N.; Takemoto, I.; Fujii, M.; Shioji, K.; Okuma, K. Org. Lett. 2017, 19, 2110.
doi:
10.1021/acs.orglett.7b00716
Moon, S.; Kato, M.; Nishii, Y.; Miura, M. Adv. Synth. Catal. 2020, 362, 1669.
doi:
10.1002/adsc.202000112
(a) Sakai, S.; Sato, K.; Yoshida, K. Tetrahedron Lett. 2020, 61, 151476.
doi:
10.1016/j.tetlet.2019.151476
pmid:
16323873
(b) Meng, L.; Fujikawa, T.; Kuwayama, M.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2016, 138, 10351.
doi:
10.1021/jacs.6b06486
pmid:
16323873
(c) Takimiya, K.; Konda, Y.; Ebata, H.; Niihara, N.; Otsubo, T. J. Org. Chem. 2005, 70, 10569.
pmid:
16323873
(d) Fedenok, L. G.; Fedotov, K. Y.; Pritchina, E. A.; Polyakov, N. E. Tetrahedron Lett. 2016, 57, 1273.
doi:
10.1016/j.tetlet.2016.02.025
pmid:
16323873
(e) Shoji, T.; Miura, K.; Ohta, A.; Sekiguchi, R.; Ito, S.; Endo, Y.; Nagahata, T.; Mori, S.; Okujima, T. Org. Chem. Front. 2019, 6, 2801.
doi:
10.1039/c9qo00593e
pmid:
16323873
Huang, H.; Xu, Z.; Ji, X.; Li, B.; Deng, G. J. Org. Lett. 2018, 20, 4917.
doi:
10.1021/acs.orglett.8b02049
Zhou, P.; Huang, Y.; Wu, W.; Yu, W.; Li, J.; Zhu, Z.; Jiang, H. Org. Biomol. Chem. 2019, 17, 3424.
doi:
10.1039/C9OB00377K
Huang, H.; Wang, Q.; Xu, Z.; Deng, G. J. Adv. Synth. Catal. 2019, 361, 591.
doi:
10.1002/adsc.201801324
Pham, P. H.; Nguyen, K. X.; Pham, H. T. B.; Tran, T. T.; Nguyen, T. T.; Phan, N. T. S. RSC Adv. 2020, 10, 11024.
doi:
10.1039/D0RA00808G
Huang, H.; Qu, Z.; Ji, X.; Deng, G. J. Org. Chem. Front.
201
9, 6, 1146.
Zhou, P.; Huang, Y.; Wu, W.; Zhou, J.; Yu, W.; Jiang, H. Org. Lett. 2019, 21, 9976.
doi:
10.1021/acs.orglett.9b03900
Zhang, W.; Tao, S.; Ge, H.; Li, Q.; Ai, Z.; Li, X.; Zhang, B.; Sun, F.; Xu, X.; Du, Y. Org. Lett. 2020, 22, 448.
doi:
10.1021/acs.orglett.9b04206
pmid:
31894988
Pham, P. H.; Nguyen, K. X.; Pham, H. T. B.; Nguyen, T. T.; Phan, N. T. S. Org. Lett. 2019, 21, 8795.
doi:
10.1021/acs.orglett.9b03414
Yue, Y.; Shao, H.; Wang, Z.; Wang, K.; Wang, L.; Zhuo, K.; Liu, J. J. Org. Chem. 2020, 85, 11265.
doi:
10.1021/acs.joc.0c01363
Liu, J.; Zhang, Y.; Yue, Y.; Wang, Z.; Shao, H.; Zhuo, K.; Lv, Q.; Zhang, Z. J. Org. Chem. 2019, 84, 12946.
doi:
10.1021/acs.joc.9b01586
Li, B.; Ni, P.; Huang, H.; Xiao, F.; Deng, G. J. Adv. Synth. Catal. 2017, 359, 4300.
doi:
10.1002/adsc.201701106
Ni, P.; Li, B.; Huang, H.; Xiao, F.; Deng, G. J. Green Chem. 2017, 19, 5553.
doi:
10.1039/C7GC02818K
Liao, Y.; Peng, Y.; Qi, H.; Deng, G. J.; Gong, H.; Li, C. Chem. Commun. 2015, 51, 1031.
doi:
10.1039/C4CC08370A
Lu, C.; Huang, H.; Tuo, X.; Jiang, P.; Zhang, F.; Deng, G. J. Org. Chem. Front. 2019, 6, 2738.
doi:
10.1039/C9QO00603F
Chitrala, T.; Rahman, N. K. F. Org Lett, 2020, 22, 1726.
doi:
10.1021/acs.orglett.9b04598
pmid:
32057247
Xu, Z.; Deng, G. J.; Zhang, F.; Chen, H.; Huang, H. Org. Lett. 2019, 21, 8630.
doi:
10.1021/acs.orglett.9b03241
Chen, J.; Li, G.; Xie, Y.; Liao, Y.; Xiao, F.; Deng, G. J.
Org. Lett
., 2015, 17, 5870.
doi:
10.1021/acs.orglett.5b03058
Jiang, J.; Tuo, X.; Fu, Z.; Huang, H.; Deng, G. J. Org. Biomol. Chem. 2020, 18, 3234.
doi:
10.1039/D0OB00074D
Nguyen, T. B.; Retailleau, P.; Org. Lett. 2018, 20, 186.
doi:
10.1021/acs.orglett.7b03547
pmid:
29219319
Chen, F. J.; Liao, G.; Li, X.; Wu, J. Shi, B. F. Org. Lett. 2014, 16, 5644.
doi:
10.1021/ol5027156
Zhang, B.; Liu, D.; Sun, Y.; Zhang, Y.; Feng, J.; Yu, F. Org. Lett. 2021, 23, 8, 3076.
doi:
10.1021/acs.orglett.0c02793
李硕, 王明亮, 周来运, 王兰芝.
磁性纳米负载对甲苯磺酸催化串联合成稠合多环的1,5-苯并氧氮杂䓬类化合物
[J]. 有机化学, 2023, 43(11): 3977-3988.
侯学会, 李议慧, 张庆玲, 刘俊桃, 陈亚静.
1,4-吡啶硫内鎓盐在有机合成中的研究与应用
[J]. 有机化学, 2023, 43(11): 3844-3860.
宇世伟, 陈兆华, 陈淇, 林舒婷, 何金萍, 陶冠燊, 汪朝阳.
硫代磺酸酯的合成与应用研究进展
[J]. 有机化学, 2022, 42(8): 2322-2330.
陈幸, 周璇, 姬小趁, 黄华文.
空气氛围下可见光诱导的硫酚氧化脱氢偶联
[J]. 有机化学, 2021, 41(12): 4704-4711.
王柏文, 周永军, 罗时荷, 罗晓燕, 陈伟清, 杨诗敏, 汪朝阳.
非光催化与电化学体系下有机硫试剂参与的烯烃构建C—S键研究进展
[J]. 有机化学, 2021, 41(1): 171-184.
程辉成, 郭鹏虎, 陈冰, 姚嘉伟, 马姣丽, 胡炜杰, 纪红兵.
二苯并噻吩的合成研究进展
[J]. 有机化学, 2021, 41(1): 94-104.