• 1.Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration. Jinan 250012;
    2.Department of Orthodontics,
    3.Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University. Jinan 250012;
    4.Department of Stomatology, Taian City Central Hospital. Taian 271000,Shandong Province, China
  • 摘要: 目的 探讨灌服蛇床子素对大鼠正畸牙移动过程中牙周组织改建的影响。 方法 72只8周龄雄性SD大鼠随机分3组,高浓度(40 mg/kg)、低浓度(20 mg/kg)蛇床子素组和对照组。建立大鼠正畸牙移动模型,分别灌服蛇床子素溶液和等量溶剂,加力7、14、21、28 d后分批处死,获取包含上颌磨牙的上颌骨,测量第一磨牙近中移动距离。分别采用H-E、抗酒石酸酸性磷酸酶染色观察牙周组织变化及对破骨细胞进行计数,采用SPSS 20.0软件包对数据进行统计学分析。 结果 加力后7、14、21、28 d,上颌第一磨牙近中移动距离逐渐增大。加力第7天,低浓度组与对照组无显著差异( P >0.05),其余各时间点实验组牙移动距离均较对照组显著增加( P <0.05);高浓度组与低浓度组之间也有显著差异( P <0.05)。组织学观察可见,张力侧成骨细胞出现,实验组较对照组明显。压力侧破骨细胞计数于加力第7天达到高峰,与对照组有显著差异( P <0.05),高浓度组较低浓度组多,且有显著差异( P <0.05);加力第14天,3组均减少,实验组仍较对照组多,有显著差异( P <0.05),高、低浓度组间无显著差异( P >0.05);21 d和28 d时继续减少,组间无显著差异( P >0.05)。 结论 灌服蛇床子素能加快正畸牙移动,在早期阶段增加牙周组织中破骨细胞数量,加快牙周组织改建,其作用受剂量影响。

    牙周组织改建

    Abstract: PURPOSE: To investigate the effect of osthole on periodontal remodeling during orthodontic tooth movement (OTM) in rats. METHODS: Seventy two 8-week-old male SD rats were randomly equally divided into 3 groups: two experimental groups of osthole with low (20 mg/kg) and high (40 mg/kg) concentration and the control group. Models of OTM were routinely established. Rats in the experimental groups were respectively given osthole by intragastric administration, while rats in the control group received the same volume of solvent. The rats were sacrificed on 7th, 14th, 21st and 28th day after orthodontic treatment, and the maxilla was harvested and the distance between the first and second molar was measured in each stage. Hematoxylin-eosin (H-E) staining, tartrate resistant acid phosphatase (TRACP) staining were performed. The results were analyzed with SPSS 20.0 software package for one-way analysis of variance. RESULTS: The mesio-moving distance of the three groups successively increased gradually. On the 7th day, there was no difference between the low concentration group and the control group (P> 0.05); at other time point, the experimental groups exhibited significant differences from the control group(P< 0.05), and the high concentration group had more obviously mesio-movement than the low concentration group(P< 0.05). Histological observation showed that in the tension side, osteoblast appeared, but more apparent in the experimental groups than in the control group. In the pressure side, the number of osteoclast reached the peak at the 7th day, and much more osteoclasts were seen in the experimental groups than in the control group (P< 0.05), in high concentration group than in low concentration group (P< 0.05). The number of osteoclast decreased subsequently, but significant difference existed between the experimental groups and the control group (P< 0.05) on the 14th day. At other time points, there was no significant difference among the three groups(P> 0.05). CONCLUSIONS: Osthole could increase the number of osteoclast in periodontium and promote bone remodeling at the early stage of treatment, its effect is dose-dependence during OTM.

    Key words: Osthole, Orthodontic tooth movement, Osteoclast, Periodontium remodeling [1] Rygh P.Ultrastructural changes in tension zones of rat molar periodontium incident to orthodontic tooth movement[J]. Am J Orthod, 1976, 70(3): 269-281.
    [2] Storey E.The nature of tooth movement[J]. Am J Orthod, 1973, 63(3): 292-314.
    [3] O'Brien CA, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis[J]. Bone, 2013, 54(2), 258-263.
    [4] Kim SJ, Chou MY, Park YG.Effect of low-level laser on the rate of tooth movement[J]. Semin Orthod, 2015, 21(3): 210-218.
    [5] Seifi M, Badiee MR, Abdolazimi Z, et al.Effect of basic fibroblast growth factor on orthodontic tooth movement in rats[J]. Cell J, 2013, 15(3): 230-237.
    [6] Xiao LQ, Wang HT, Li YL, et al.The effects of dried root aqueous extract of Salvia miltiorrhiza and its major ingredient in acceleration of orthodontic tooth movement in rat[J]. Iran J Basic Med Sci, 2015, 18(10): 1044-1049.
    [7] Kondo M, Kondo H, Miyazawa K, et al.Experimental tooth movement-induced osteoclast activation is regulated by sympathetic signaling[J]. Bone, 2013, 52(1): 39-47.
    [8] Iwasaki LR, Gibson CS, Crouch LD, et al. Speed of tooth movement is related to stress and IL-1 gene polymorphisms [J]. Am J Orthod Dentofacial Orthop, 2006, 130(6): 698.e1-9.
    [9] Kaku M, Kohno S, Kawata T, et al.Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice[J]. J Dent Res, 2001, 80(10): 1880-1883.
    [10] Zimmo N, Saleh MH, Mandelaris GA, et al.Corticotomy accelerated orthodontics: a comprehensive review and update[J]. Compend Contin Educ Dent, 2017, 38(1): 17-25.
    [11] Choi HJ, Lee DY, Kim TW.Dynamics of alloplastic bone grafts on an early stage of corticotomy facilitated orthodontic tooth movement in beagle dogs[J]. Biomed Res Int, 2014, 2014: 417541.
    [12] Mathews DP, Kokich VG.Accelerating tooth movement: the case against corticotomy-induced orthodontics[J]. Am J Orthod Dentofacial Orthop, 2013, 144(1): 5-13.
    [13] Lee DY, Ahn HW, Herr Y, et al.Periodontal responses to augmented corticotomy with collagen membrane application during orthodontic buccal tipping in dogs[J]. Biomed Res Int, 2014, 2014: 873918.
    [14] Migliario M, Pitarela P, Fanuli M, et al. Laser-induced osteoblast proliferation is mediated by ROS production [J]. Lasers Med Sci, 2014, 29(4):1463-1467.
    [15] Huertas RM, Lunabertos ED, Ramostorecilas J, et al.Effect and clinical implications of the low-energy diode laser on bone cel proliferation[J]. Bio Res Nurs, 2014, 16(2): 191-196.
    [16] Habib FA, Gama SK, Ramalho LM, et al. Laser-induced alveolar bone changes during orthodontic movement: a histological study on rodents [J]. Photomed Laser Surg, 2010, 28(6)∶ 823-830.
    [17] 张春梅, 冯霞, 钟艺. 蛇床子的药理研究进展[J]. 实用药物与临床, 2006, 9(1): 55-57.
    [18] Zhou J, Sun XL, Wang SW.Micelle-mediated extraction and cloud-point preconcentration of osthole and imperatorin from Cnidium monnieri with analysis by high performance liquid chromatography[J]. J Chromatogr A, 2008, 1200(2): 93-99.
    [19] 马玉明. 蛇床子素的药理进展及剂型开发[J]. 中国现代药物应用, 2008, 2(15): 112-114.
    [20] You LS, Feng S, An R, et al.Osthole: A promising lead compound for drug discovery from a traditional chinese medicine (TCM)[J]. Nat Prod Commun, 2009, 4(2): 297-302.
    [21] Kuo PL, Hsu YL, Chang CH, et al.Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells[J]. J Pharmacol Exp Ther, 2005, 314(3): 1290-1299.
    [22] Sun F, Xie ML, Zhu LJ, et al.Inhibitory effect of osthole on alcohol-induced fatty liver in mice[J]. Dig Liver Dis, 2009, 41(2): 127-133.
    [23] Zhang JJ, Xue J, Wang HB, et al.Osthole improves alcohol-induced fatty liver In mice by reduction of hepatic oxidative stress[J]. Phytother Res, 2011, 25(5): 638-643.
    [24] Chen T, Liu W, Chao X, et al.Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway[J]. Neuroscience, 2011,183: 203-211.
    [25] 沈刚, 陈荣敬, 刘侃. 药物加速矫治牙移动的机制探讨[J]. 口腔医学, 1993, 13(1): 47-48.
    [26] Mostafa YA, Weaks-Dybvig M, Osdoby P.Orchestration of tooth movement[J]. Am J Orthod, 1983, 83(3): 245-250.
    [27] Liao PC, Chien SC, Ho CL, et al.Osthole regulates inflammatory mediator expression through modulating NF-kappa B, mitogen-activated protein kinases, protein kinase C, and reactive oxygen species[J]. J Agric Food Chem, 2010, 58(19): 10445-10451.
    [28] Lin ZK, Liu J, Jiang GQ, et al.Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells[J]. Oncol Rep, 2017, 37(3):1611-1618.
    [29] Yan YH, Li SH, Li HY, et al.Osthole protects bone marrow-derived neural stem cells from oxidative damage through PI3K/Akt -1 pathway[J]. Neurochem Res, 2017, 42(2): 398-405.
    [30] Fusi F, Sgaragli G, Ha LM, et al.Mechanism of osthole inhibition of vascular Ca(v)1.2 current[J]. Eur J Pharmacol, 2012, 680(1-3): 22-27.
    [31] 吴垠, 赵承斌. OPG/RANK/RANKL系统与祖国传统医药[J]. 中国医药导报, 2012, 9(10): 134-136.
    [32] Zhang WP, Ma DM, Zhao QD, et al.The effect of the major components of Fructus Cnidii on osteoblast in vitro [J]. J Acupunct Meridian Stud, 2010, 3(1): 32-37.
    [33] Proffit WR, Fields HW著, 傅民魁译. 当代口腔正畸学[M]. 第3版. 北京:人民军医出版社, 2007: 293-295.
    [34] 包幸福,胡敏.正畸牙移动中骨吸收机制及其调控的研究进展[J]. 国际口腔医学杂志, 2012, 39(2): 187-189.
    [35] Li J, Chan W.Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry[J]. J Pharm Biomed Anal, 2013, 74: 156-161.
    [36] Lv X, Wang CY, Hou J, et al.Isolation and identification of metabolites of osthole in rats[J]. Xenobiotica, 2012, 42(11): 1120-1127.
    [37] 鲍君杰, 谢梅林, 周佳, 等. 蛇床子素预防去卵巢大鼠骨质疏松的实验研究[J]. 中国药学杂志, 2006, 41(3): 193-195.
    [38] Shi J, Fu Q, Chen W, et al.Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract[J]. J Ethnopharmacol, 2013, 145(1): 25-31.
    [39] Yokoya K, Sasaki T, Shibasaki Y.Distributional changes of osteoclasts and preosteoclastic cells in periodontal tissues during experimental tooth movement as revealed by quantitative immunohistochemistry of H+-ATPase[J]. J Dent Res, 1997, 76(1): 580-587.
    [40] Lacey DL, Tan HL, Lu J, et al.Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo [J]. Am J Pathol, 2000, 157(2): 435-448. 潘巧婷, 臧晓龙, 孙照薇, 潘梦琪, 朱鑫美, 李志勇. 信号素4D在大鼠双膦酸盐相关颌骨坏死发生中的作用探讨 [J]. 上海口腔医学, 2022, 31(6): 625-631. 王菲菲, 饶定成, 金思宇, 杨沛鸣, 周永梅, 万光勇. 蛇床子素对脂多糖诱导的巨噬细胞极化和炎症反应的影响 [J]. 上海口腔医学, 2022, 31(3): 255-259. 刘维佳, 唐镇, 张琦, 姜莉萍. 低能量微波照射对大鼠正畸牙移动及牙周组织改建的影响 [J]. 上海口腔医学, 2022, 31(2): 156-161. 胡秀, 康非吾. 低氧诱导因子1α在小鼠下颌第一磨牙萌出过程中的表达及意义 [J]. 上海口腔医学, 2021, 30(1): 13-16. 陈婉红, 蔡世雄, 吴小榕. 正畸牙移动中牙周血管内皮祖细胞在骨改建中的作用机制探讨 [J]. 上海口腔医学, 2019, 28(6): 610-615. 刘小灿, 王旭霞, 吴晓晓, 刘悦, 闫召月, 张君. 补骨脂对大鼠正畸后稳定性的影响 [J]. 上海口腔医学, 2019, 28(5): 455-459. 梅梅, 易杰, 张疆弢, 黄瑾, 江策, 丰雷. 外源性TGF-β1与PDGF-BB联合应用对正畸牙压力侧Pyk2蛋白和基因表达的影响 [J]. 上海口腔医学, 2019, 28(5): 472-477. 王宇琛, 王辰, 刘娜, 蔡川, 李伟, 徐璐璐. TNF-α对人脱落乳牙牙髓干细胞促破骨细胞形成能力的影响 [J]. 上海口腔医学, 2018, 27(5): 449-454. 周璨,龙思岑,黄兰,戴红卫. 大鼠正畸牙移动牙周组织中叉头框蛋白O1和成骨特异转录因子RUNX2的表达 [J]. 上海口腔医学, 2018, 27(3): 230-234. 崔金婕, 王旭霞, 王媛, 陈佩佩, 马丹, 张君. 不同浓度木通皂苷D对大鼠正畸牙移动的影响 [J]. 上海口腔医学, 2018, 27(2): 129-134. 杨盼盼, 王旭霞, 陈云, 汪倩倩, 王英姿, 张君. 淫羊藿苷对大鼠正畸牙移动过程中牙槽骨改建的影响 [J]. 上海口腔医学, 2017, 26(5): 465-470. 朱绍跃, 袁长永, 刘宗响, 李晓明, 王鹏来. 骨皮质切开加速大鼠正畸牙移动的机制研究 [J]. 上海口腔医学, 2017, 26(1): 12-16. 周巳入, 代庆刚, 张鹏, 河奈玲, 杨树亮, 江凌勇. 信号转导和转录活化因子3在正畸力介导的骨改建中的表达 [J]. 上海口腔医学, 2016, 25(6): 652-656. 张疆弢, 梅梅, 江策, 丰雷, 黄瑾, 王家佳. rhPDGF-BB与rhTGF-β 1 联合应用对大鼠正畸牙破骨细胞 FAK蛋白表达的影响 [J]. 上海口腔医学, 2015, 24(4): 423-427. 徐宇红, 李高华, 刘建国, 管晓燕. 局部注射重组人转化生长因子对大鼠正畸牙移动的影响 [J]. 上海口腔医学, 2014, 23(4): 423-426.