相关文章推荐
  • Calculators
  • Critical Value Tables
  • Glossary
  • You can use the following two methods to drop a column in a pandas DataFrame that contains “Unnamed” in the column name:

    Method 1: Drop Unnamed Column When Importing Data

    df = pd.read_csv('my_data.csv', index_col=0)
    

    Method 2: Drop Unnamed Column After Importing Data

    df = df.loc[:, ~df.columns.str.contains('^Unnamed')]

    The following examples show how to use each method in practice.

    Example 1: Drop Unnamed Column When Importing Data

    Suppose we create a simple pandas DataFrame and export it to a CSV file:

    import pandas as pd
    #create DataFrame
    df1 = pd.DataFrame({'team': ['A', 'B', 'C', 'D', 'E', 'F'],
                        'points': [4, 4, 6, 8, 9, 5],
                        'rebounds': [12, 7, 8, 8, 5, 11]})
    #view DataFrame
    print(df1)
      team  points  rebounds
    0    A       4        12
    1    B       4         7
    2    C       6         8
    3    D       8         8
    4    E       9         5
    5    F       5        11
    #export DataFrame to CSV file
    df1.to_csv('my_data.csv')
    

    Now when we attempt to read the file into a pandas DataFrame, the first column has a name of Unnamed: 0

    #import CSV file
    df2 = pd.read_csv('my_data.csv')
    #view DataFrame
    print(df2)
       Unnamed: 0 team  points  rebounds
    0           0    A       4        12
    1           1    B       4         7
    2           2    C       6         8
    3           3    D       8         8
    4           4    E       9         5
    5           5    F       5        11
    

    To avoid this, we can specify index_col=0 to tell pandas that the first column is actually the index column:

    #import CSV file
    df2 = pd.read_csv('my_data.csv', index_col=0)
    #view DataFrame
    print(df2)
      team  points  rebounds
    0    A       4        12
    1    B       4         7
    2    C       6         8
    3    D       8         8
    4    E       9         5
    5    F       5        11
    

    Example 2: Drop Unnamed Column After Importing Data

    Suppose we create a simple pandas DataFrame and export it to a CSV file:

    import pandas as pd
    #create DataFrame
    df1 = pd.DataFrame({'team': ['A', 'B', 'C', 'D', 'E', 'F'],
                        'points': [4, 4, 6, 8, 9, 5],
                        'rebounds': [12, 7, 8, 8, 5, 11]})
    #export DataFrame to CSV file
    df1.to_csv('my_data.csv')
    

    Now suppose we import this file into a pandas DataFrame:

    #import CSV file
    df2 = pd.read_csv('my_data.csv')
    #view DataFrame
    print(df2)
       Unnamed: 0 team  points  rebounds
    0           0    A       4        12
    1           1    B       4         7
    2           2    C       6         8
    3           3    D       8         8
    4           4    E       9         5
    5           5    F       5        11
    

    To drop the column that contains “Unnamed” in the name, we can use the following syntax:

    #drop any column that contains "Unnamed" in column name
    df2 = df2.loc[:, ~df2.columns.str.contains('^Unnamed')]
    #view updated DataFrame
    print(df2)
      team  points  rebounds
    0    A       4        12
    1    B       4         7
    2    C       6         8
    3    D       8         8
    4    E       9         5
    5    F       5        11
    

    Notice that the “Unnamed: 0” column has been dropped from the DataFrame.

    Additional Resources

    The following tutorials explain how to perform other common tasks in pandas:

    How to Drop First Row in Pandas DataFrame
    How to Drop First Column in Pandas DataFrame
    How to Drop Duplicate Columns in Pandas

     
    推荐文章