摘要:
物种形成是进化生物学研究的一个永恒主题, 由于生物群体进化是连续和动态的, 物种界限变得难于界定。本文首先讨论了3种地理物种形成模式(同域、邻域及异域), 并分析了近期报道的研究证据。其次, 评述了合子后生殖隔离机制的分子遗传基础和应用群体基因组数据分析的证据, 包括BDMI模型(Bateson-Dobzhansky-Muller incompatibility)、QTLs (quantitative trait loci)、霍尔丹法则及大X染色体效应。最后, 探讨了交配系统作为合子前隔离机制之一与物种形成的关系, 认为近交或自交通过扩大种群遗传结构分化, 增强不同交配系统的种群间不对称基因渐渗, 或种群间无基因渐渗等途径, 促进新物种形成。已知植物交配系统的演化更倾向于从异交(或自交不亲和)向自交(或近交亲和)方式, 花性状和基因组的分化推动形成所谓的自交综合征, 研究交配系统驱动或强化物种形成模式对认识植物物种形成机制有重要意义。
Abstract
Background & Aim:
Speciation is a constant theme in the study of evolutionary biology. The nature of the dynamics and continuity of population evolution makes it hard to define the concept of species. Understanding the mechanisms of speciation remains crucial in the fields of evolutionary biology, taxonomy, conservation biology and biodiversity. Here we revisited the existent theories of speciation and reviewed the recent advances in empirical study.
Progresses:
We discussed three geographical patterns of speciation (sympatric, parapatric, and allopatric speciation) and reviewed the corresponding empirical evidence from recent studies, based on the classical concept of biological species coined in terms of reproduction isolation. We further discussed the molecular genetics basis of postzygotic reproductive isolation and the evidence derived from analyses of applying population genomic data, including BDMI (Bateson-Dobzhansky-Muller incompatibility), QTLs (quantitative trait loci) analysis, Haldane’s rule and the large X-chromosome effects. We finally discussed the relationship between mating system, one of the pre-zygotic isolation barriers, and speciation. We inferred that selfing or inbreeding could drive speciation via either increasing population genetic differentiation or impeding gene flow between populations of different mating systems, or both.
Prospects:
More evidence is needed to verify speciation theories. In addition, given the more frequent transitions to selfing from outcrossing in plant species, both flower characters and genomic differentiation could drive the so-called selfing syndromes. It is significant to clarify the role of mating system as a driver or as a reinforcer in plant speciation.
Key words:
speciation,
species concept,
geographic speciation,
postzygotic barrier,
mating system
肖钰, 王茜, 何梓晗, 李玲玲, 胡新生 (2022) 基于生物学物种定义探讨物种形成理论与验证的研究进展. 生物多样性, 30, 21480.
DOI: 10.17520/biods.2021480
.
Yu Xiao, Xi Wang, Zihan He, Lingling Li, Xinsheng Hu (2022) Advances in speciation theories and their verifications based on the biological species concept. Biodiversity Science, 30, 21480.
DOI: 10.17520/biods.2021480
.
假设 Assumption
|
理论 Theory
|
参考文献 Reference
|
显性理论
Dominance
|
X染色体含有显性和隐性等位基因, 隐性基因在XY个体上暴露, 产生不育或不成活, 在XX个体中被显性基因掩盖。
The X chromosome has both dominant and recessive alleles. The recessive genes are exposed in XY individuals to produce sterility or infertility but are masked by dominant genes in XX individuals.
|
Muller,
1942
|
Faster-male
|
由于精子发生在杂交种中容易受到干扰, 性选择可能使雄性表达的基因比雌性进化得更快, 导致杂交雄性不育比杂交雌性不育更常见。
Spermatogenesis is susceptible to interference in hybrids. Sexual selection could make the genes expressed in males evolve more rapidly than the genes expressed in females. This results in that the hybrid male sterility is more common than the hybrid female sterility.
|
Wu & Davis,
1993
|
Faster-X
|
与常染色体相比, X染色体突变率更大,
K
a
/
K
s
比值较大。
X chromosome has a greater mutation rate and a larger
K
a
/K
s
ratio than the autosomes.
|
Charlesworth et al,
1987
|
减数分裂驱动
Meiotic drive
|
性染色体在减数分裂时因自私基因干扰, 偏离孟德尔遗传期望比例。
Sex chromosomes deviate from the expected Mendelian ratio during meiosis due to the interference by selfish genes.
|
Frank,
1991
; Hurst & Pomiankowski,
1991
|
表1
霍尔丹法则形成的相关理论
Table 1
Theories relevant to Haldane’s Rule
假设 Assumption
|
理论 Theory
|
参考文献 Reference
|
显性理论
Dominance
|
X染色体含有显性和隐性等位基因, 隐性基因在XY个体上暴露, 产生不育或不成活, 在XX个体中被显性基因掩盖。
The X chromosome has both dominant and recessive alleles. The recessive genes are exposed in XY individuals to produce sterility or infertility but are masked by dominant genes in XX individuals.
|
Muller,
1942
|
Faster-male
|
由于精子发生在杂交种中容易受到干扰, 性选择可能使雄性表达的基因比雌性进化得更快, 导致杂交雄性不育比杂交雌性不育更常见。
Spermatogenesis is susceptible to interference in hybrids. Sexual selection could make the genes expressed in males evolve more rapidly than the genes expressed in females. This results in that the hybrid male sterility is more common than the hybrid female sterility.
|
Wu & Davis,
1993
|
Faster-X
|
与常染色体相比, X染色体突变率更大,
K
a
/
K
s
比值较大。
X chromosome has a greater mutation rate and a larger
K
a
/K
s
ratio than the autosomes.
|
Charlesworth et al,
1987
|
减数分裂驱动
Meiotic drive
|
性染色体在减数分裂时因自私基因干扰, 偏离孟德尔遗传期望比例。
Sex chromosomes deviate from the expected Mendelian ratio during meiosis due to the interference by selfish genes.
|
Frank,
1991
; Hurst & Pomiankowski,
1991
|
Baniaga AE, Marx HE, Arrigo N, Barker MS (2020) Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecology Letters, 23, 68-78.
Bank C, Bürger R, Hermisson J (2012) The limits to parapatric speciation: Dobzhansky-Muller incompatibilities in a continent-island model. Genetics, 191, 845-863.
Barnard-Kubow KB, McCoy MA, Galloway LF (2017) Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. New Phytologist, 213, 1466-1476.
Barreto FS (2003) Assotative Mating as a Barrier to Gene Flow in a Coral Reef Fish Species Flock. MSc Thesis, University of North Carolina, Wilmington.
Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. American Journal of Botany, 94, 1527-1533.
Barton NH, Briggs DE, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, New York.
Barton NH, Charlesworth B (1984) Genetic revolution, founder effects, and speciation. Annual Review of Ecology and Systematics, 15,133-164.
Bateson W (1909) Heredity and Variation in Modern Lights. Cambridge University Press, Cambridge.
Berdan EL, Fuller RC, Kozak GM (2021) Genomic landscape of reproductive isolation in
Lucania
killifish: The role of sex loci and salinity. Journal of Evolutionary Biology, 34, 157- 174.
Bock WJ (1986) Species concepts, speciation and macroevolution. In: Modern Aspects of Species (eds Lwatsuki K, Raven PK, Bock WJ), pp. 31-57. University of Tokyo Press, Tokyo.
Bock WJ (2004) Species: The concept, category and taxon. Journal of Zoological Systematics and Evolutionary Research, 42, 178-190.
Bogdanova VS, Kosterin OE, Yadrikhinskiy AK (2014) Wild peas vary in their cross-compatibility with cultivated pea (
Pisum sativum
subsp.
sativum
L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus. Theoretical and Applied Genetics, 127, 1163-1172.
Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: Reseeding potential varies among coral species. Science Advances, 3, e1602373.
Buide ML, del Valle JC, Pissatto M, Narbona E (2015) Night life on the beach: Selfing to avoid pollinator competition between two sympatric
Silene
species. Annals of Botany, 116, 201-211.
Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: The most important way to classify speciation? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 2997-3007.
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD (2020) Clustering of loci controlling species differences in male chemical bouquets of sympatric
Heliconius
butterflies. Ecology and Evolution, 11, 89-107.
Caballero A, Hill WG (1992) Effective size of nonrandom mating populations. Genetics, 130, 909-916.
Carleton KL, Escobar-Camacho D, Kocher TD (2019) Visual adaptation could aid sympatric speciation in a deep crater lake. Molecular Ecology, 28, 5007-5009.
Castillo DM, Gibson AK, Moyle LC (2016) Assortative mating and self-fertilization differ in their contributions to reinforcement, cascade speciation, and diversification. Current Zoology, 62, 169-181.
Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex chromosomes and autosomes. The American Naturalist, 130, 113-146.
Charlesworth D (2006) Evolution of plant breeding systems. Current Biology, 16, R726-R735.
Cheng X, Li LL, Xiao Y, Chen XY, Hu XS (2020) Advances in the methods of detecting interspecific gene introgression and their applications. Scientia Sinica Vitae, 50, 1388-1404. (in Chinese with English abstract)
Crespi B, Nosil P (2013) Conflictual speciation: Species formation via genomic conflict. Trends in Ecology & Evolution, 28, 48-57.
Cutter AD (2019) Reproductive transitions in plants and animals: Selfing syndrome, sexual selection and speciation. New Phytologist, 224, 1080-1094.
Deitz KC, Takken W, Slotman MA (2020) The genetic architecture of post-zygotic reproductive isolation between
Anopheles coluzzii
and
A. quadriannulatus
. Frontiers in Genetics, 11, 925.
Dobzhansky T (1937) Genetics and the Origin of Species. Columbia University Press, New York.
Dong F, Li SH, Chiu CC, Dong L, Yao CT, Yang XJ (2020) Strict allopatric speciation of sky island
Pyrrhula erythaca
species complex. Molecular Phylogenetics and Evolution, 153, 106941.
Esfeld K, Berardi AE, Moser M, Bossolini E, Freitas L, Kuhlemeier C (2018) Pseudogenization and resurrection of a speciation gene. Current Biology, 28, 3776-3786.
Feliner GN, Álvarez I, Fuertes-Aguilar J, Heuertz M, Marques I, Moharrek F, Piñeiro R, Riina R, Rosselló JA, Soltis PS, Villa-Machío I (2017) Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity, 118, 513-516.
Fernández-Meirama M, Carvajal-Rodríguez A, Rolán-Alvarez E (2017) Testing the role of mating preference in a case of incomplete ecological speciation with gene flow. Biological Journal of the Linnean Society, 122, 549-557.
Foote AD (2018) Sympatric speciation in the genomic era. Trends in Ecology & Evolution, 33, 85-95.
Fornoni J, Ordano M, Pérez-Ishiwara R, Boege K, Domínguez CA (2015) A comparison of floral integration between selfing and outcrossing species: A meta-analysis. Annals of Botany, 117, 299-306.
Frank SA (1991) Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution, 45, 262.
Freeland JR, Kirk H, Petersen S (2011) Molecular Ecology. John Wiley & Sons, Chichester.
Futuyma DJ, Mayer GC (1980) Non-allopatric speciation in animals. Systematic Biology, 29, 254-271.
Gao YD, Gao XF, Harris A (2019) Species boundaries and parapatric speciation in the complex of alpine shrubs,
Rosa sericea
(Rosaceae), based on population genetics and ecological tolerances. Frontiers in Plant Science, 10, 321.
Gavrilets S (2000) Waiting time to parapatric speciation. Proceedings of the Royal Society B: Biological Sciences, 267, 2483-2492.
Gavrilets S (2003) Models of speciation: What have we learned in 40 years? Evolution, 57, 2197-2215.
Geber MA, Dawson TE, Delph LF (1999) Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin.
Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary
Enigma
of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36, 47-79.
Haffer J (1969) Speciation in amazonian forest birds. Science, 165, 131-137.
Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101-109.
Hänniger S, Dumas P, Schöfl G, Gebauer-Jung S, Vogel H, Unbehend M, Heckel DG, Groot AT (2017) Genetic basis of allochronic differentiation in the fall armyworm. BMC Evolutionary Biology, 17, 68.
Hong DY (2020) Gen-morph species concept—A new and integrative species concept for outbreeding organisms. Journal of Systematics and Evolution, 58, 725-742.
Höllinger I, Hermisson J (2017) Bounds to parapatric speciation: A Dobzhansky-Muller incompatibility model involving autosomes, X chromosomes, and mitochondria. Evolution, 71, 1366-1380.
Hu WZ, Zhao JM, Zhang YW (2019) Fitness advantage and maintenance mechanisms of dimorphic mixed mating plants. Biodiversity Science, 27, 468-474. (in Chinese with English abstract)
Hu XS (2005) Tension versus ecological zones in a two-locus system. Theoretical Population Biology, 68, 119-131.
Hu XS (2011) Mating system and the critical migration rate for swamping selection. Genetics Research, 93, 233-254.
Hu XS (2015) Mating system as a barrier to gene flow. Evolution, 69, 1158-1177.
Hu XS, Filatov DA (2016) The large-X effect in plants: Increased species divergence and reduced gene flow on the
Silene
X-chromosome. Molecular Ecology, 25, 2609-2619.
Hu XS, Zhang XX, Zhou W, Hu Y, Wang X, Chen XY (2019) Mating system shifts a species’ range. Evolution, 73, 158-174.
Hurst LD, Pomiankowski A (1991) Causes of sex ratio bias may account for unisexual sterility in hybrids: A new explanation of Haldane’s Rule and related phenomena. Genetics, 128, 841-858.
Jewell CP, Zhang SV, Gibson MJS, Tovar-Méndez A, McClure B, Moyle LC (2020) Intraspecific genetic variation underlying postmating reproductive barriers between species in the wild tomato clade (
Solanum
sect.
Lycopersicon
). Journal of Heredity, 111, 216-226.
Jordan CY, Ally D, Hodgins KA (2015) When can stress facilitate divergence by altering time to flowering? Ecology and Evolution, 5, 5962-5973.
Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A (2020) Contrasting signatures of genomic divergence during sympatric speciation. Nature, 588, 106-111.
Knowles LL (2000) Tests of Pleistocene speciation in montane grasshoppers (genus
Melanoplus
) from the sky islands of western North America. Evolution, 54, 1337-1348.
Kohlmann B, Arriaga-Jiménez A, Rös M (2018) Dung beetle vicariant speciation in the mountains of Oaxaca, Mexico, with a description of a new species of
Phanaeus
(Coleoptera, Geotrupidae, Scarabaeidae). ZooKeys, (743), 67-93.
Li LL, Wang X, Xiao Y, Cheng X, Chen XY, Hu XS (2021) On the theories of plant mating system and molecular evolution and their applications. Scientia Sinica Vitae, 51, doi: 10.1360/SSV-2021-0106. (in Chinese with English abstract)
[李玲玲, 王茜, 肖钰, 程祥, 陈晓阳, 胡新生 (2021) 植物交配系统与分子进化理论及其应用研究. 中国科学: 生命科学, 51, doi: 10.1360/SSV-2021-0106.]
Liao Q, Du R, Gou J, Guo L, Shen H, Liu H, Nguyen JK, Ming R, Yin T, Huang S, Yan J (2020) The genomic architecture of the sex-determining region and sex-related metabolic variation in
Ginkgo biloba
. The Plant Journal, 104, 1399- 1409.
Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, Manser A, Montchamp-Moreau C, Petrosyan VG, Pomiankowski A, Presgraves DC, Safronova LD, Sutter A, Unckless RL, Verspoor RL, Wedell N, Wilkinson GS, Price TAR (2016) The ecology and evolutionary dynamics of meiotic drive. Trends in Ecology & Evolution, 31, 315-326.
Llopart A, Brud E, Pettie N, Comeron JM (2018) Support for the dominance theory in
Drosophila
transcriptomes. Genetics, 210, 703-718.
Lu Y, Hokin SA, Kermicle JL, Hartwig T, Evans MMS (2019) A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of
Zea mays
. Nature Communications, 10, 2304.
Mayr E (1942) Systematics and the Origin of Species. Columbia University Press, New York.
Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annual Review of Plant Biology, 62, 485- 514.
Moison M, Roux F, Quadrado M, Duval R, Ekovich M, Lê DH, Verzaux M, Budar F (2010) Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in
Arabidopsis thaliana
. The Plant Journal, 63, 728-738.
Moran PA, Pascoal S, Cezard T, Risse JE, Ritchie MG, Bailey NW (2018) Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes. Molecular Ecology, 27, 3905-3924.
Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biology Symposium, 6, 71-125.
Nieto-Lugilde M, Werner O, McDaniel SF, Koutecký P, Kčera J, Rizk SM, Ros RM (2018) Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus
Ceratodon
. American Journal of Botany, 105, 1009-1020.
Nuckolls NL, Núñez MAB, Eickbush MT, Young JM, Lange JJ, Yu JS, Smith GR, Jaspersen SL, Malik HS, Zanders SE (2017)
wtf
genes are prolific dual poison-antidote meiotic drivers. eLife, 6, e26033.
Orr HA, Orr LH (1996) Waiting for speciation: The effect of population subdivision on the time to speciation. Evolution, 50, 1742.
Orr HA, Turelli M (2001) The evolution of postzygotic isolation: Accumulating Dobzhansky-Muller incompatibilities. ACS Applied Materials & Interfaces, 55, 1085-1094.
Osborne OG, Kafle T, Brewer T, Dobreva MP, Hutton I, Savolainen V (2020) Sympatric speciation in mountain roses (
Metrosideros
) on an oceanic island. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 375, 20190542.
Ostevik KL, Rifkin JL, Xia HH, Rausher MD (2020) Morning glory species co-occurrence is associated with asymmetrically decreased and cascading reproductive isolation. Evolution Letters, 5, 75-85.
Palma-Silva C, Cozzolino S, Paggi GM, Lexer C, Wendt T (2015) Mating system variation and assortative mating of sympatric bromeliads (
Pitcairnia
spp.) endemic to neotropical inselbergs. American Journal of Botany, 102, 758-764.
Pickup M, Brandvain Y, Fraïsse C, Yakimowski S, Barton NH, Dixit T, Lexer C, Cereghetti E, Field DL (2019) Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist, 224, 1035-1047.
Pirani RM, Peloso PLV, Prado JR, Polo ÉM, Knowles LL, Ron SR, Rodrigues MT, Sturaro MJ, Werneck FP (2020) Diversification history of clown tree frogs in Neotropical rainforests (
Anura
, Hylidae,
Dendropsophus leucophyllatus
group). Molecular Phylogenetics and Evolution, 150, 106877.
Postel Z, Touzet P (2020) Cytonuclear genetic incompatibilities in plant speciation. Plants, 9, 487.
Presgraves DC (2010) The molecular evolutionary basis of species formation. Nature Reviews Genetics, 11, 175-180.
Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452.
Rausher MD (2017) Selfing, local mate competition, and reinforcement. The American Naturalist, 189, 87-104.
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM (2017) Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow. Journal of Evolutionary Biology, 30, 1450-1477.
Rettelbach A, Servedio MR, Hermisson J (2016) Speciation in peripheral populations: Effects of drift load and mating systems. Journal of Evolutionary Biology, 29, 1073-1090.
Richards EJ, Servedio MR, Martin CH (2019) Searching for sympatric speciation in the genomic era. BioEssays, 41, e1900047.
Roos C, Helgen KM, Miguez RP, Thant NML, Lwin N, Lin AK, Lin A, Yi KM, Soe P, Hein ZM, Myint MNN, Ahmed T, Chetry D, Urh M, Veatch EG, Duncan N, Kamminga P, Chua MAH, Yao L, Matauschek C, Meyer D, Liu ZJ, Li M, Nadler T, Fan PF, Quyet LK, Hofreiter M, Zinner D, Momberg F (2020) Mitogenomic phylogeny of the Asian colobine genus
Trachypithecus
with special focus on
Trachypithecus phayrei
(Blyth, 1847) and description of a new species. Zoological Research, 41, 656-669.
Rundle HD, Nosil P (2005) Ecological speciation. Ecology Letters, 8, 336-352.
Sambatti JBM, Ortiz-Barrientos D, Baack EJ, Rieseberg LH (2008) Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers. Ecology Letters, 11, 1082-1091.
Schliewen UK, Klee B (2004) Reticulate sympatric speciation in Cameroonian crater lake cichlids. Frontiers in Zoology, 1, 5.
Schluter D (2009) Evidence for ecological speciation and its alternative. Science, 323, 737-741.
Schumer M, Rosenthal GG, Andolfatto P (2018) What do we mean when we talk about hybrid speciation?. Heredity, 120, 379-382.
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brännström A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Möst M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A (2014) Genomics and the origin of species. Nature Reviews Genetics, 15, 176-192.
Seifert B (2020) The gene and gene expression (GAGE) species concept: An universal approach for all eukaryotic organisms. Systematic Biology, 69, 1033-1038.
Shen R, Wang L, Liu X, Wu J, Jin W, Zhao X, Xie X, Zhu Q, Tang H, Li Q, Chen L, Liu YG (2017) Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nature Communications, 8, 1310.
Sheu Y, Zurano JP, Ribeiro MA, Avila-Pires TC, Rodrigues MT, Colli GR, Werneck FP (2020) The combined role of dispersal and niche evolution in the diversification of
Neotropical lizards
. Ecology and Evolution, 10, 2608-2625.
Shimizu KK, Tsuchimatsu T (2015) Evolution of selfing: Recurrent patterns in molecular adaptation. Annual Review of Ecology, Evolution, and Systematics, 46, 593-622.
Skeels A, Cardillo M (2019) Reconstructing the geography of speciation from contemporary biodiversity data. The American Naturalist, 193, 240-255.
[100]
Slatkin M (1982) Pleiotropy and parapatric speciation. Evolution, 36, 263.
[101]
Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science, 236, 787-792.
[102]
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC (2018) Cytonuclear integration and co-evolution. Nature Reviews Genetics, 19, 635-648.
[103]
Sutherland BL, Galloway LF (2021) Variation in heteroploid reproduction and gene flow across a polyploid complex: One size does not fit all. Ecology and Evolution, 11, 9676-9788.
[104]
Sweigart AL, Brandvain Y, Fishman L (2019) Making a murderer: The evolutionary framing of hybrid gamete-killers. Trends in Genetics, 35, 245-252.
[105]
Takagui FH, Baumgärtner L, Baldissera JN, Laridondo Lui R, Margarido VP, Fonteles SBA, Garcia C, Birindelli JO, Moreira-Filho O, Almeida FS, Giuliano-Caetano L (2019) Chromosomal diversity of thorny catfishes (SiluriformesDoradidae): A case of allopatric speciation among Wertheimerinae species of São Francisco and Brazilian eastern coastal drainages. Zebrafish, 16, 477-485.
[106]
Thompson KA (2020) Experimental hybridization studies suggest that pleiotropic alleles commonly underlie adaptive divergence between natural populations. The American Naturalist, 196, E16-E22.
[107]
Titus BM, Blischak PD, Daly M (2019) Genomic signatures of sympatric speciation with historical and contemporary gene flow in a tropical anthozoan (Hexacorallia: Actiniaria). Molecular Ecology, 28, 3572-3586.
[108]
Udovic D (1980) Frequency-dependent selection, disruptive selection, and the evolution of reproductive isolation. The American Naturalist, 116, 621-641.
[109]
van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution, 27, 353-361.
[110]
Wainwright BJ, Arlyza IS, Karl SA (2020) Population genetics of the banded coral shrimp,
Stenopus hispidus
(Olivier, 1811), in the Indonesian Archipelago. Journal of Experimental Marine Biology and Ecology, 525, 151325.
[111]
Wang HW, Yin HY, Jiao CZ, Fang XJ, Wang GP, Li GR, Ni F, Li PH, Su PS, Ge WY, Lyu ZF, Xu SS, Yang YH, Hao YC, Cheng XX, Zhao JX, Liu C, Xu FF, Ma X, Sun SL, Zhao Y, Bao YG, Liu C, Zhang JJ, Pavlicek T, Li AF, Yang ZJ, Nevo E, Kong LR (2020) Sympatric speciation of wild emmer wheat driven by ecology and chromosomal rearrangements. Proceedings of the National Academy of Sciences, USA, 117, 5955-5963.
[112]
Wang X, Cheng X, Zhou W, Zhang XX, Hu Y, Chen XY, Hu XS (2019) Assessing the ecological and evolutionary processes underlying cytonuclear interactions. Scientia Sinica Vitae, 49, 951-964. (in Chinese with English abstract)
[113]
Wang YH, Comes HP, Cao YN, Guo R, Mao YR, Qiu YX (2017) Quaternary climate change drives allo-peripatric speciation and refugial divergence in the
Dysosma versipellis
-
pleiantha
complex from different forest types in China. Scientific Reports, 7, 40261.
[114]
Wang ZF, Jiang YZ, Bi H, Lu ZQ, Ma YZ, Yang XY, Chen NN, Tian B, Liu BB, Mao XX, Ma T, DiFazio SP, Hu QJ, Abbott RJ, Liu JQ (2021) Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Molecular Plant, 14, 208-222.
[115]
Wright S (1969) Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago.
[116]
Wright S (1977) Evolution and the Genetics of Populations. Vol.3. Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago.
[117]
Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society B: Biological Sciences, 280, 20130133.
[118]
Wu CI (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865.
[119]
Wu CI, Davis AW (1993) Evolution of postmating reproductive isolation: The composite nature of Haldane’s rule and its genetic bases. The American Naturalist, 142, 187-212.
[120]
Yarahmadov T, Robinson S, Hanemian M, Pulver V, Kuhlemeier C (2020) Identification of transcription factors controlling floral morphology in wild
Petunia
species with contrasting pollination syndromes. The Plant Journal, 104, 289-301.
[121]
Zachos FE (2018) Species concepts, species delimitation and the inherent limitations of taxonomy. Journal of Genetics, 97, 811-815.
[122]
Zhang LB, Sun TA, Woldesellassie F, Xiao HL, Tao Y (2015) Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility. PLoS Genetics, 11, e1005073.
[123]
Zhang XX, Wang X, Hu Y, Zhou W, Chen XY, Hu XS (2019) Advances in the study of population genetic diversity at plant species’ margins. Chinese Journal of Plant Ecology, 43, 383-395. (in Chinese with English abstract)
[124]
Zhong L, Barrett SCH, Wang XJ, Wu ZK, Sun HY, Li DZ, Wang H, Zhou W (2019) Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants. New Phytologist, 224, 1290-1303.
范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞.
红砂基因组大小变异及物种分化
[J]. 生物多样性, 2021, 29(10): 1308-1320.
胡文昭,赵骥民,张彦文.
二态混合交配系统的适合度优势及其维持机制研究进展
[J]. 生物多样性, 2019, 27(4): 468-474.
胡颖, 王茜, 张新新, 周玮, 陈晓阳, 胡新生.
叶绿体DNA标记在谱系地理学中的应用研究进展
[J]. 生物多样性, 2019, 27(2): 219-234.
田昊, 廖万金.
克隆生长对被子植物传粉过程的影响
[J]. 生物多样性, 2018, 26(5): 468-475.
李霖锋, 刘宝.
表观遗传变异在植物杂交与多倍化过程中的作用
[J]. 生物多样性, 2017, 25(6): 600-607.
王玉国.
自然杂交与物种形成
[J]. 生物多样性, 2017, 25(6): 565-576.
邱英雄, 鹿启祥, 张永华, 曹亚男.
东亚第三纪孑遗植物的亲缘地理学: 现状与趋势
[J]. 生物多样性, 2017, 25(2): 136-146.
洪德元.
生物多样性事业需要科学、可操作的物种概念
[J]. 生物多样性, 2016, 24(9): 979-999.
刘建全.
“整合物种概念”和“分化路上的物种”
[J]. 生物多样性, 2016, 24(9): 1004-1008.
张德兴.
为什么在物种概念上难以达成共识?
[J]. 生物多样性, 2016, 24(9): 1009-1013.