The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Beijing Da Xue Xue Bao Yi Xue Ban. 2023 Jun 18; 55(3): 400–407.
Published online 2023 Apr 27. Chinese. doi: 10.19723/j.issn.1671-167X.2023.03.003
PMCID: PMC10258065

Language: Chinese | English

基因-环境交互作用对动脉僵硬度影响的家系研究

Genotype-environment interaction on arterial stiffness: A pedigree-based study

王 雪珩

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 王 雪珩

王 斯悦

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 王 斯悦

彭 和香

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 彭 和香

范 梦

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 范 梦

郭 煌达

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 郭 煌达

侯 天姣

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 侯 天姣

王 梦莹

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 王 梦莹

武 轶群

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 武 轶群

秦 雪英

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 秦 雪英

唐 迅

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 唐 迅

李 劲

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 李 劲

陈 大方

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 陈 大方

胡 永华

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China

Find articles by 胡 永华

吴 涛

北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China 重大疾病流行病学教育部重点实验室,北京 100191, Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Beijing 100191, China 北京大学公共卫生学院流行病与卫生统计学系,北京 100191, Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China 重大疾病流行病学教育部重点实验室,北京 100191, Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Beijing 100191, China 0-12-34-5baPWV, brachial-ankle pulse wave velocity; SBP, systolic blood pressure; DBP, diastolic blood pressure; ABI, ankle-brachial index.Total, n (%)887 (14.1)3 886 (61.7)1 529 (24.3)Male, n (%)762 (85.9)1 799 (46.3)281 (18.4)< 0.01Age/years, x ± s 55.28±11.3056.88±10.7157.84±9.48< 0.01baPWV/(cm/s), x ± s 1 675.20±350.821 690.77±381.671 687.54±386.260.54SBP/mmHg, x ± s 138.17±19.33136.65±20.37135.39±19.53< 0.01DBP/mmHg, x ± s 84.78±15.7981.20±14.6879.34±10.90< 0.01ABI, x ± s 1.09±0.101.08±0.111.08±0.110.07Educational levels, n (%)< 0.01  Primary school or less323 (36.4)1 549 (39.9)614 (40.1)  Middle school426 (48.0)1 693 (43.6)635 (41.5)  High school or above138 (15.6)644 (16.6)280 (18.3)Hypertension, n (%)635 (71.6)2 558 (65.8)1002 (65.5)< 0.01Diabetes, n (%)314 (35.4)1 643 (42.3)854 (55.9)< 0.01Antihypertensive treatment, n (%)350 (39.5)1 704 (43.8)751 (49.1)< 0.01Diabetes mellitus treatment, n (%)187 (21.1)1 156 (29.7)687 (44.9)< 0.01Lipid-lowering treatment, n (%)92 (10.4)505 (13.0)255 (16.7)< 0.01

2.2. 动脉僵硬度评价指标的遗传度估计

基于研究对象的家系结构,利用极大似然法估计的方差组分模型对baPWV及ABI的遗传度进行估计,估计得到baPWV的遗传度为0.360(95% CI :0.302~0.418, P < 0.001),ABI的遗传度为0.243(95% CI :0.175~0.311, P < 0.001),验证了总体遗传效应会对baPWV和ABI水平产生影响,同时,本研究还发现协变量对二者遗传度的贡献均较小。

2.3. 基因型-生活方式交互作用研究

我们进一步探索了基因型-环境交互作用对动脉僵硬度的影响,结果如 图 1 所示。其中,Ⅰ-GenoXE显示基因型-性别( P 1 =0.01)和基因型-年龄( P 1 =0.03)交互作用分别影响baPWV和ABI水平;同时,基因型-体力活动交互作用影响baPWV的大小( P 1 =0.04),提示不同体力活动状态的研究对象,遗传因素对baPWV的影响程度差异有统计学意义;此外,Ⅰ-GenoXE研究还显示,基因型-BMI交互作用对ABI的影响有统计学意义( P 1 =0.03)。

基因型-环境交互作用研究对动脉僵硬度的影响

Effect of genotype-environment interaction on arterial stiffness

Ⅰ-GenoXE, type Ⅰ genotype-environment interaction; Ⅱ-GenoXE, type Ⅱ genotype-environment interaction; BMI, body mass index; baPWV, brachial-ankle pulse wave velocity; ABI, ankle-brachial index.

Ⅱ-GenoXE结果显示,基因型-性别交互作用对baPWV( P 2 =0.01)及ABI( P 2 < 0.01)的影响有统计学意义;基因型-年龄交互作用( P 2 =0.01)对ABI的影响有统计学意义。对于生活方式危险因素,本研究结果显示基因型-健康膳食评分( P 2 < 0.01)间的交互作用会影响baPWV水平,而基因型-BMI交互作用( P 2 =0.02)会影响ABI的水平,提示随着研究对象健康膳食评分和BMI间的差异增加,影响baPWV和ABI的基因或基因集间存在显著差异。

2.4. 糖脂代谢通路候选基因位点与健康膳食模式和BMI间的交互作用

GenoXE分析提示,遗传因素与膳食模式和BMI间存在Ⅱ-GenoXE交互作用,分别影响baPWV和ABI水平,提示随着研究对象健康膳食评分或BMI间差异的增加,影响baPWV或ABI的基因或基因集间存在差异,因此本研究进一步探索了可能与健康膳食模式和BMI间存在交互作用的基因位点。

本研究中,纳入基因-环境交互作用分析的45个SNP位点均符合基因位点的质量控制标准。基因-环境交互作用分析后,我们首先发现了2个与膳食模式间存在交互作用的基因位点( 表 2 )。在调整年龄、性别模型后,结果显示在不遵循健康膳食模式的研究对象中,位于 ADAMTS9-AS2 基因的rs4607103和位于 CDH13 基因上的rs7193788位点每增加一个风险等位基因,动脉僵硬度出现可疑性升高的风险将分别增加30%(交互作用 P =0.002)和23%(交互作用 P =0.01),但上述两个位点并未通过Bonferroni多重检验校正。

表 2

基因位点与健康膳食模式交互作用对baPWV的影响

Effect of gene-healthy diet interaction on baPWV

Variants Reference/Effect allele EAF Adherence to a healthy dietary pattern * P for interaction
No Yes
* Model adjusted for age, gender, smoking, alcohol consumption, physical activity, body mass index, and educational level. Showing as odds ratio (95% CI ), representing the effects for each additional risk allele. baPWV, brachial-ankle pulse wave velocity; EAF, effect allele frequency.
ADAMTS9-AS2 rs4607103 T/C 0.58 1.30 (1.06-1.60) 0.89 (0.78-1.03) 0.002
CDH13 rs7193788 G/A 0.53 1.23 (1.00-1.52) 0.90 (0.79-1.04) 0.01

当以ABI作为结局评价指标时,本研究结果显示3个SNP位点与BMI间存在交互作用,改变动脉僵硬度出现可疑性升高的风险( 表 3 )。其中, CDKAL1 基因上的rs7756992位点、 ATP8B2 基因上的rs67156297,以及 SLC30A8 基因上的rs3802177位点与BMI间存在交互作用。按研究对象BMI水平的三分位数,将个体的BMI水平分为低三分位数(Q1)、中三分位数(Q2)及高三分位数(Q3)三组。研究结果显示,在BMI低、中、高三分位数组中,上述位点每增加一个风险等位基因,动脉僵硬度出现可疑性升高的风险将会增加,其中 CDKAL1 基因的rs7756992位点通过了多重检验校正。

表 3

基因位点与BMI交互作用对ABI的影响

Effect of gene-BMI interaction on ABI

Variants Reference/Effect allele EAF BMI group * P for interaction
Q1 Q2 Q3
* BMI groups were classified according to the tertiles of individual’s BMI levels, defined as Q1, Q2 and Q3, model was adjusted for age, gender, smoking, alcohol consumption, physical activity, healthy diet pattern, and educational level. Showing as odds ratio (95% CI ), representing the effects for each additional risk allele. BMI, body mass index; ABI, ankle-brachial index; EAF, effect allele frequency.
CDKAL1 rs7756992 A/G 0.53 0.71 (0.55-0.92) 1.27 (1.03-1.57) 1.01 (0.78-1.32) < 0.001
ATP8B2 rs67156297 A/G 0.89 0.74 (0.50-1.09) 0.99 (0.69-1.41) 1.60 (0.91-2.80) 0.002
SLC30A8 rs3802177 T/C 0.64 0.73 (0.56-0.95) 0.97 (0.77-1.21) 0.99 (0.76-1.30) 0.01

3. 讨论

本研究基于北京房山家系队列设计,充分发挥了家系研究的设计优势,利用家系人群的亲缘关系和表型信息,估计了总体加性遗传效应与年龄、性别以及生活方式间的交互作用对动脉僵硬度的影响,并进一步探索性挖掘了可能与生活方式存在交互作用的基因位点对动脉僵硬程度的影响。

在GenoXE分析中,对于年龄、性别在内的环境因素,本研究探讨了总体加性遗传效应与年龄、性别间的交互作用对动脉僵硬程度的影响,其中,Ⅰ型基因型-性别和基因型-年龄交互作用分别影响个体的baPWV和ABI水平,提示不同性别或不同年龄差距的研究对象间,baPWV和ABI的遗传度存在差异。Ⅱ型交互作用的结果显示,基因型-性别和基因型-年龄交互作用会对baPWV和ABI水平产生影响,提示不同性别、年龄差距的研究对象中,影响baPWV和ABI的基因/基因集间存在差异。既往研究显示,基因型-性别和基因型-年龄的交互作用会影响个体的血压、血糖及血脂水平,但尚未有研究发现类似的交互作用会影响个体动脉的僵硬程度 [ 14 ] 。尽管本研究基于家系人群样本有上述发现,但相关结果仍有待更多的家系研究进一步验证。

对于行为生活方式危险因素,本研究结果发现,Ⅰ型基因型-体力活动交互作用会影响baPWV水平,提示在不同体力活动水平人群中,动脉僵硬度的遗传度存在差异。然而,目前少有研究进一步印证二者间的交互作用,还有待未来进一步的探索。除此之外,本研究还发现Ⅱ型基因型-膳食模式会影响baPWV水平。Choi等 [ 6 ] 的队列研究发现,女性 ZNF618 基因中的rs10817542位点与钙摄入量间存在显著的剂量依赖关系,影响baPWV的大小。中国人群证据研究发现, SIRT6 基因中的rs107251与大豆摄入量存在交互作用,会影响baPWV的水平 [ 16 ] 。本研究以ABI作为动脉僵硬度评价指标,分别观察了Ⅰ型和Ⅱ型基因型-BMI交互作用对ABI的影响。既往有研究报道了类似的基因-环境交互作用影响baPWV水平,该研究报道 APOA5 基因上rs662799位点的基因多态性和肥胖间存在相互作用,并会加速与年龄相关的动脉僵硬程度 [ 5 ] APOA5 基因编码蛋白apoA5,是心血管疾病的主要危险因素,因此,遗传因素与肥胖间的相互作用可能通过调节脂蛋白水平来介导,进而导致动脉僵硬的进程加快。然而,由于GenoXE需要基于家系设计进行分析,因此目前针对动脉僵硬度相关的GenoXE研究仍较为有限,后续仍待进一步研究来印证本研究的发现。

在探索GenoXE的基础上,本研究针对存在阳性GenoXE的行为生活方式因素进一步开展了基因-环境交互作用分析。以baPWV作为动脉僵硬度的评价指标,本研究结果显示 ADAMTS9-AS2 基因的rs4607103位点和 CDH13 基因的rs7193788位点与健康膳食模式间存在交互作用,影响动脉僵硬度的可疑性升高。rs4607103位点所在基因编码一种基质蛋白金属酶,在心脏和骨骼肌等组织大量表达 [ 17 ] 。有研究发现,在暴露于高脂肪摄入的Ⅱ型糖尿病患者的细胞外基质水平升高,导致其毛细血管密度和细胞骨架水平发生改变 [ 18 ] ,影响血管内皮功能,而类似机制也同样被发现于动脉僵硬度增加的病因模型中 [ 19 ] 。还有研究指出,该位点与膳食纤维间可能存在交互作用影响糖尿病的发生。 CDH13 基因的rs7193788位点在亚洲人群GWAS研究中被发现与体内脂代谢水平相关 [ 20 ] ,是调节体内脂联素水平的关键基因。有动物实验证据表明,脂联素能够通过刺激一氧化氮的形成来抵抗体内炎性反应 [ 21 ] ,而该机制也与动脉僵硬度增加的病因机制间存在一定重叠。Jo等 [ 22 ] 的研究指出,具有 CDH13 基因rs3865188位点多态性风险的肥胖吸烟者患低脂联素血症的风险高6.2倍。

基于本研究发现的基因型-BMI交互作用对ABI的影响,我们还进一步探讨了 CDKAL1 基因上的rs7756992位点、 ATP8B2 基因上的rs67156297位点和 SLC30A8 基因上的rs3802177位点与BMI间存在交互作用,均对动脉僵硬度的可疑性升高产生影响。上述3个位点在既往的GWAS研究中被发现与Ⅱ型糖尿病发病有关,且均在亚洲人群中被证实 [ 23 - 25 ] 。还有研究发现, ATP8B2 基因上的rs67156297位点与体内C-反应蛋白水平有关,是慢性低度炎症的潜在主要调节因子,对脂质和其他心脏代谢途径存在基因多效性作用,并进一步印证了该位点与总胆固醇及高密度脂蛋白等脂质代谢物间的关联 [ 26 ] 。推测该位点可能通过影响脂质水平进而诱发动脉僵硬程度改变,而其具体作用机制尚不清晰。此外,由于本研究发现的上述位点与健康膳食模式和BMI间的交互作用以及其对动脉僵硬度的影响尚无直接证据证明,因此还待后续研究的挖掘和探索来进一步证实本研究的相关结果。

北京房山家系队列研究是宝贵的家系资源,家系研究设计是探索复杂疾病的遗传病因及其与环境的复杂交互作用的可靠样本。家系成员之间的亲缘关系为病因研究提供了均一的遗传背景,不会因人群分层影响而出现易感基因与疾病表型的假阳性关联。同时,家系研究对象提供了更为丰富的遗传信息,更容易估计候选基因对疾病表型变异的贡献。此外,家系样本在评估基因对环境的效应修饰方面也更加可靠。本研究利用家系设计,基于研究对象的亲缘关系和表型信息,估计了总体加性遗传效应与性别、年龄以及行为生活方式危险因素的交互作用,同时也发现了多个与健康生活方式存在交互作用的基因位点,探索性挖掘了基因位点-健康生活方式危险因素-动脉僵硬度间的关联,为识别CVD的早期风险、制定相关精准预防策略提供了一定的研究证据。

综上所述,本研究发现遗传因素与膳食模式和BMI间存在交互作用,影响动脉僵硬度的水平,并进一步发现了多个存在阳性交互作用的基因位点,未来还有待在更大人群的样本中验证本研究结果,并深入探索影响动脉僵硬度的可能交互作用机制。

Funding Statement

国家自然科学基金(82204135)、北京市自然科学基金(7232237)和中国博士后科学基金(BX2021021、2022M710249)

Funding Statement

Supported by the National Natural Science Foundation of China (82204135), the Beijing Natural Science Foundation (7232237), and the China Postdoctoral Science Foundation (BX2021021, 2022M710249)

References

1. Chirinos JA, Segers P, Hughes T, et al. Large-artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019; 74 (9):1237–1263. doi: 10.1016/j.jacc.2019.07.012. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Boutouyrie P, Chowienczyk P, Humphrey JD, et al. Arterial stiffness and cardiovascular risk in hypertension. Circ Res. 2021; 128 (7):864–886. doi: 10.1161/CIRCRESAHA.121.318061. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Willum-Hansen T, Staessen JA, Torp-Pedersen C, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006; 113 (5):664–670. doi: 10.1161/CIRCULATIONAHA.105.579342. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events. Circulation. 2010; 121 (4):505–511. doi: 10.1161/CIRCULATIONAHA.109.886655. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Kim M, Yoo HJ, Lee HJ, et al. Longitudinal interaction between APOA-1131T>C and overweight in the acceleration of age-related increase in arterial stiffness through the regulation of circulating triglycerides. Hypertens Res. 2019; 42 (2):241–248. doi: 10.1038/s41440-018-0137-y. [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Choi S, Jung S, Kim MK, et al. Gene and dietary calcium interaction effects on brachial-ankle pulse wave velocity. Clin Nutr. 2016; 35 (5):1127–1134. doi: 10.1016/j.clnu.2015.08.009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Fung TT, Chiuve SE, McCullough ML, et al. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008; 168 (7):713–720. doi: 10.1001/archinte.168.7.713. [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Li Y, Schoufour J, Wang DD, et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. BMJ. 2020; 368 :l6669. [ PMC free article ] [ PubMed ] [ Google Scholar ]
9. 张 存泰, 陶 军, 田 小利, et al. 血管衰老临床评估与干预中国专家共识(2018) 中华老年病研究电子杂志 2019; 6 (1):1–8. doi: 10.3877/cma.j.issn.2095-8757.2019.01.001. [ CrossRef ] [ Google Scholar ]
10. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019; 74 (10):e177–e232. doi: 10.1016/j.jacc.2019.03.010. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Mitchell GF, Verwoert GC, Tarasov KV, et al. Common genetic variation in the 3'-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk: The AortaGen Consortium. Circ Cardiovasc Genet. 2012; 5 (1):81–90. doi: 10.1161/CIRCGENETICS.111.959817. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Fung K, Ramirez J, Warren HR, et al. Genome-wide association study identifies loci for arterial stiffness index in 127, 121 UK Biobank participants. Sci Rep. 2019; 9 (1):9143. doi: 10.1038/s41598-019-45703-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Rode M, Teren A, Wirkner K, et al. Genome-wide association analysis of pulse wave velocity traits provide new insights into the causal relationship between arterial stiffness and blood pressure. PLoS One. 2020; 15 (8):e0237237. doi: 10.1371/journal.pone.0237237. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Poveda A, Chen Y, Brändström A, et al. The heritable basis of gene-environment interactions in cardiometabolic traits. Diabetologia. 2017; 60 (3):442–452. doi: 10.1007/s00125-016-4184-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Martin LJ, Kissebah AH, Sonnenberg GE, et al. Genotype-by-smoking interaction for leptin levels in the metabolic risk complications of obesity genes project. Int J Obes Relat Metab Disord. 2003; 27 (3):334–340. doi: 10.1038/sj.ijo.0802232. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Sun K, Xiang X, Li N, et al. Gene-diet interaction between SIRT6 and soybean intake for different levels of pulse wave velocity. Int J Mol Sci. 2015; 16 (7):14338–14352. [ PMC free article ] [ PubMed ] [ Google Scholar ]
17. Boesgaard TW, Gjesing AP, Grarup N, et al. Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients: EUGENE2 study. PLoS One. 2009; 4 (9):e7236. doi: 10.1371/journal.pone.0007236. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Berria R, Wang L, Richardson DK, et al. Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab. 2006; 290 (3):E560–565. doi: 10.1152/ajpendo.00202.2005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Hwang CL, Muchira J, Hibner BA, et al. Alcohol consumption: A new risk factor for arterial stiffness? Cardiovasc Toxicol. 2022; 22 (3):236–245. doi: 10.1007/s12012-022-09728-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Chung CM, Lin TH, Chen JW, et al. A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes. 2011; 60 (9):2417–2423. doi: 10.2337/db10-1321. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Antoniades C, Antonopoulos AS, Tousoulis D, et al. Adiponectin: From obesity to cardiovascular disease. Obes Rev. 2009; 10 (3):269–279. doi: 10.1111/j.1467-789X.2009.00571.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Jo J, Sull JW, Park EJ, et al. Effects of smoking and obesity on the association between CDH13 (rs3865188) and adiponectin among Korean men: The KARE study. Obesity. 2012; 20 (8):1683–1687. doi: 10.1038/oby.2011.128. [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Li YY, Wang LS, Lu XZ, et al. CDKAL1 gene rs7756992 A/G polymorphism and type 2 diabetes mellitus: A meta-analysis of 62, 567 subjects. Sci Rep. 2013; 3 (1):3131. doi: 10.1038/srep03131. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Imamura M, Takahashi A, Yamauchi T, et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nature Communications. 2016; 7 (1):10531. doi: 10.1038/ncomms10531. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Lin Y, Li P, Cai L, et al. Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med Genet. 2010; 11 (1):97. doi: 10.1186/1471-2350-11-97. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Koskeridis F, Evangelou E, Said S, et al. Pleiotropic genetic architecture and novel loci for C-reactive protein levels. Nat Commun. 2022; 13 (1):6939. doi: 10.1038/s41467-022-34688-6. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center