郑范博, 王国光, 倪培. 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展. 地质力学学报, 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050
引用本文: 郑范博, 王国光, 倪培. 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展. 地质力学学报, 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050
ZHENG Fanbo, WANG Guoguang, NI Pei. 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits. Journal of Geomechanics, 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050
Citation: ZHENG Fanbo, WANG Guoguang, NI Pei. 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits. Journal of Geomechanics , 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050

随着战略性新兴产业的快速发展,稀有金属等关键金属资源的地位日益不可或缺。花岗伟晶岩是最重要的稀有金属矿床成因类型,该类型矿床的成矿流体特征和成因机制是矿床学的热门研究话题。文章主要对花岗伟晶岩型矿床的成矿流体特征和成矿机制进行了探讨。花岗伟晶岩型稀有金属矿床成矿流体普遍富集挥发分(B、P、F和H 2 O)和成矿元素,具有低黏度、低成核率、强元素溶解能力和强迁移性。花岗伟晶岩型稀有金属矿床成矿流体形成温压条件存在争议,部分研究者认为形成于高温高压条件,也有研究者认为可能形成于过冷却条件下,温度可能低至350℃。花岗质岩浆高度结晶分异演化和富成矿元素地壳物质小比例深熔是形成成矿花岗伟晶岩的两种主要机制。流体不混溶和组成带纯化是岩浆热液演化过程中稀有金属进一步富集的重要手段。中国规模最大的甲基卡花岗伟晶岩型锂矿是研究该类矿床的理想实验室。

花岗伟晶岩型矿床

Strategic rare metals have irreplaceable important use to emerging industry development. Granitic pegmatite is the main source of rare metals, and their fluid characteristics and metallogenic mechanism are hot topics. This paper mainly focuses on fluid properties and metallogenic mechanism of granitic pegmatite-type rare metal deposits. Ore-forming fluids of the granitic pegmatite-type rare metal deposits are generally enriched in volatile (B, P, F and H 2 O) and ore-forming elements, with low viscosity, low nucleation rate, but strong element solubility and mobility. The ore-forming fluids of the granitic pegmatite-type rare metal deposit were argued to be captured under the condition of high temperature and high pressure, or the temperature of as low as 350℃ under the condition of supercooling. The high crystallization differentiation evolution of granitic magma and the small proportion of crustal material rich in ore-forming elements are the two main mechanisms for the formation of ore-forming granitic pegmatite. Fluid immiscibility and constitutional zone refining are important means for further enrichment of rare metals in the process of magmatic hydrothermal evolution. The largest Jiajika granitic pegmatite-type lithium deposit in China is an ideal laboratory to study this kind of deposit.

granitic pegmatite-type deposit rare element ore-forming fluids metallogenic mechanism

BAKER D R, 1998. The escape of pegmatite dikes from granitic plutons; constraints from new models of viscosity and dike propagation[J]. The Canadian Mineralogist, 36(2): 255-263. http://www.researchgate.net/publication/277747582_The_escape_of_pegmatite_dikes_from_granitic_plutons_Constraints_from_new_models_of_viscosity_and_dike_propagation

BORISOVA A Y, THOMAS R, SALVI S, et al., 2012. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: new evidence for melt-melt-fluid immiscibility[J]. Mineralogical Magazine, 76(1): 91-113. doi: 10.1180/minmag.2012.076.1.91

ČERNÝ P P, 1991a. Rare-element granitic pegmatites. Part Ⅱ: Regional to global environments and petrogenesis[J]. Geoscience Canada, 18(2): 68-81. http://www.researchgate.net/publication/285711507_rare-element_granitic_pegmatites_part_ii_regional_to_global_environments_and_petrogenesis

ČERNÝ P P, 1991b. Rare-element granitic pegmatites. Part Ⅰ: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canada, 18(2): 49-67. http://www.synergiescanada.org/browse/etc/gc/391/3722

CHAKOUMAKOS B C, LUMPKIN G R, 1990. Pressure-temperature constraints on the crystallization of the Harding pegmatite, Taos County, New Mexico[J]. The Canadian Mineralogist, 28(2): 287-298. http://www.researchgate.net/publication/284877519_Pressure-temperature_constraints_on_the_crystallization_of_the_Harding_pegmatite_Taos_County_New_Mexico

FAN J J, TANG G J, WEI G J, et al., 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, 352-253: 105236. http://www.sciencedirect.com/science/article/pii/s0024493719303950

FU X F, HOU L W, WANG D H, et al., 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China[J]. Geological Survey of China, 1(3): 37-43. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201403007.htm

HAO X F, FU X F, LIANG B, et al., 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J]. Mineral Deposits, 34(6): 1199-1208. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201506009.htm

HARLAUX M, MERCADIER J, BONZI W M E, et al., 2017. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): Insights from LA-ICPMS analysis of primary fluid inclusions[J]. Geofluids, 2017, 2017: 1925817. http://www.researchgate.net/publication/322307809_Geochemical_signature_of_rare-metal_magmatic_fluids_exsolved_from_the_Beauvoir_granite_Massif_Central_France_revealed_by_LA-ICPMS_analysis_of_primary_fluid_inclusions

HULSBOSCH N, HERTOGEN J, DEWAELE S, et al., 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 132: 349-374. doi: 10.1016/j.gca.2014.02.006

JIANG S Y, WEN H J, XU C, et al., 2019. Earth sphere cycling and enrichment mechanism of critical metals: major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China, 33(2): 112-118. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJJ201902003.htm

KONTAK D J, CREASER R A, HEAMAN L M, et al., 2005. U-Pb tantalite, Re-Os molybdenite, and 40 Ar/ 39 Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite[J]. Atlantic Geology, 41(1): 17-29. http://www.freepatentsonline.com/article/137012360.html

KONZETT J, SCHNEIDER T, NEDYALKOVA L, et al., 2018. Anatectic granitic pegmatites from the eastern alps: a case of variable rare-metal enrichment during high-grade regional metamorphism-i: mineral assemblages, geochemical characteristics, and emplacement ages[J]. The Canadian Mineralogist, 56(4): 555-602. doi: 10.3749/canmin.1800008

LI J K, CHOU I M, 2017. Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika Lithium Deposit, China, under elevated external pressures in a hydrothermal diamond-anvil cell[J]. Geofluids, 2017: 1-12. http://www.researchgate.net/publication/321066859_Homogenization_Experiments_of_Crystal-Rich_Inclusions_in_Spodumene_from_Jiajika_Lithium_Deposit_China_under_Elevated_External_Pressures_in_a_Hydrothermal_Diamond-Anvil_Cell

LIANG B, FU X F, TANG Y, et al., 2016. Granite geochemical characteristics in Jiajika rare metal deposit, western Sichuan[J]. Journal of Guilin University of Technology, 36(1): 42-49. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX201601007.htm

LIU L J, WANG D H, LIU X F, et al., 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263-278. (in Chinese with English abstract) http://www.researchgate.net/publication/320189362_The_main_types_distribution_features_and_present_situation_of_exploration_and_development_for_domestic_and_foreign_lithium_mine

LIU S B, YANG Y Q, WANG D H, et al., 2019. Discovery and significance of granite type lithium industrial orebody in Jiajika orefield, Sichuan province[J]. Acta Geologica Sinica, 93(6): 1309-1320. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201906011.htm

LONDON D, 1986. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 71(3-4): 376-395. http://www.researchgate.net/publication/277746309_Magmatic-hydrothermal_transition_in_the_Tanco_rare-element_pegmatite_evidence_from_fluid_inclusions_and_phase-equilibrium_experiments

LONDON D, 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. The Canadian Mineralogist, 30(3): 499-540. http://www.researchgate.net/publication/279544747_The_application_of_experimental_petrology_to_the_genesis_and_crystallization_of_granitic_pegmatites

LONDON D, 2008. Pegmatites: the canadian mineralogist special publication 10[J]. Mineralogical Association of Canada, Quebec, Canada, 347. http://econgeol.geoscienceworld.org/content/103/8/1730.extract

MORGAN G B, LONDON D, 1987. Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba[J]. American Mineralogist, 72(11-12): 1097-1121. http://ammin.geoscienceworld.org/content/72/11-12/1097

NI P, CHI Z, PAN J Y, et al., 2018. The characteristics of ore-forming fluids and mineralization mechanism in hydrothermal deposits: a case study of some typical deposits in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 369-394, 560. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201803001.htm

RODA-ROBLES E, VILLASECA C, PESQUERA A, et al., 2018. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides[J]. Ore Geology Reviews, 95: 408-430. doi: 10.1016/j.oregeorev.2018.02.027

SALVI S, FONTAN F, MONCHOUX P, et al., 2000. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght Complex (Morocco)[J]. Economic Geology, 95(3): 559-576. http://pangea.stanford.edu/research/ODEX/EG/papers/Abs95-3_files/salvi.pdf

STEWART D B, 1978. Petrogenesis of lithium-rich pegmatites[J]. American Mineralogist, 63(9-10): 970-980. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=American%20Mineralogist&atitle=Petrogenesis%20of%20lithium-rich%20pegmatites

THOMAS R, DAVIDSON P, 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-Consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 72: 1088-1101. doi: 10.1016/j.oregeorev.2015.10.004

VEKSLER I V, DORFMAN A M, DULSKI P, et al., 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite[J]. Geochimica et Cosmochimica Acta, 79: 20-40. doi: 10.1016/j.gca.2011.11.035

WANG D H, WANG C H, SUN Y, et al., 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 4(5): 1-8. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201705001.htm

WANG L K, WANG H F, HUANG Z L, 2000. Geochemical indicators of trace element in Li-F granite liquid segregation[J]. Acta Petrologica Sinica, 16(2): 145-152. (in Chinese with English abstract) http://www.researchgate.net/publication/287695835_Geochemical_indicators_of_trace_element_in_Li-F_granite_liquid_segregation

WANG Q S, 2016. Analysis of global lithium resources exploration and development, supply and demand situation[J]. China Mining Magazine, 25(3): 11-15, 24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201603002.htm

WEBSTER J D, THOMAS R, RHEDE D, et al., 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 61(13): 2589-2604. doi: 10.1016/S0016-7037(97)00123-3

WU F Y, LIU Z C, LIU X C, et al., 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and Plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1-36. (in Chinese with English abstract) http://www.researchgate.net/publication/279331756_Himalayan_leucogranite_Petrogenesis_and_implications_to_orogenesis_and_plateau_uplift

XU X W, NIU L, HONG T, et al., 2019. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 25 (1): 1-8. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201901002.htm

XIONG X, LI J K, WANG D H, et al., 2019. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 38(2): 241-253. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201902008.htm

XU Z Q, WANG R C, ZHAO Z B, et al., 2018. On the Structural Backgrounds of the Large-scale ""Hard-rock Type"" Lithium Ore Belts in China[J]. Acta Geologica Sinica, 92(6): 1091-1106. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201806001&dbcode=CJFD&year=2018&dflag=pdfdown

XU Z Q, FU X F, ZHAO Z B, et al., 2019. Discussion on relationships of gneiss dome and Metallogenic regularity of pegmatite-type lithium deposits[J]. Earth Science, 44(5): 1452-1463. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905004.htm

YU F, WANG D H, YU Y, et al., 2019. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 38(3): 354-364. (in Chinese with English abstract) http://www.researchgate.net/publication/342765571_The_Distribution_and_Exploration_Status_of_Domestic_and_Foreign_Sedimentary-type_Lithium_Deposits

ZHANG H, LV Z H, TANG Y, 2019. Metallogeny and prospecting model as well as prospecting direction of pegma-tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792-814. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201904008.htm

李贤芳, 田世洪, 王登红, 等, 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 39(2): 273-304. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002005.htm Figure 1.

Representative photo of rare metal pegmatites showing graphic texture(The sample is a hand specimen from the Dahongliutan lithium deposit, Xinjiang)

Figure 2.

A complete section of a pegmatite dike from near Palomar Mountain, San Diego County, California, USA(29 cm-thickness; London, 2018 )

Figure 3.

Typical inclusions in the spodumene from the granitic pegmatite-type lithium-bearing ore. (a) Crystal-rich inclusion hosted in the spodumene from Jiajika; (b) CO 2 -rich Fluid Inclusion Assemblage hosted in the spodumene from Jiajika; (c) Crystal-rich Fluid Inclusion Assemblage hosted in the spodumene from Jiajika; (d) Crystal-rich Fluid Inclusion Assemblage hosted in the spodumene from Dahongliutan

Figure 4.

Temperature versus H 2 O concentration plot of the pseudo-binary silicate melt-H 2 O system ( Thomas and Davidson, 2016 ).

Figure 5.

Temperature and pressure conditions of main pegmatite deposits in the world

Figure 6.

Schematic diagram of the relationship between granite and granitic pegmatite ( London, 2008 )

Figure 7.

Schematic diagram of the constitutional zone refining of granitic pegmatite magma( London, 2014 , 2018 ). (a) During the constitutional zone refining, the compatible components dissolve from the bulk melt and attach to the surface of the diagenetic mineral through the boundary layer. (b) Because the volatiles decrease the solid temperature and enhance the miscibility of the components, the excluded rare metal components are enriched in the boundary layer liquid. (c) Once the composition of the melt is exhausted, the boundary layer liquid will crystallize, resulting in a mutation in the composition of the growing minerals (mica, tourmaline)

Figure 8.

Distribution of major lithium deposits in the world

Figure 9.

Geological sketch of the Jiajika rare metal ore field( Huang et al., 2020 )