这门课成功地刷新了我的认知,来科大以后我上过不少比较差的课,但是和杨老师这门课比起来,那完全就是小巫见大巫了,上完这门课我只想骂脏话,并祈求学校千万不要让杨老师再开课了,如果不是因为最低打一分,我都想给这门课负分。

首先,课程定位有严重的偏差,作为“高等概率论”课,教材居然用的是严加安的测度论讲义,课程从头到尾与概率论脱节,除去中间讲的条件期望条件分布之外与概率论搭不上一点边,可笑至极。

其次,授课质量极烂。杨老师上课是怎么样的呢?把定义抄一遍,把定理罗列一遍,开始证明定理,证完定理就迅速切换到下一个定理,没有motivation,没有解释说明,没有例子。那这课听了干嘛??而且上课过程中总会出现一些错误,其实我压根没听过他上课,但是我时不时就会听到前排同学指出他的错误,然后他就会...笑? 次数非常的频繁,基本上每节课都能遇到。

课程容量极小,一学期下来,除了Kolmogorov相容性定理,测度弱收敛,条件期望条件分布之外,其他内容基本真包含于folland前三章,也就是高实上半个学期的部分内容。多出来的这些内容,换个飙车快的老师怕不是两周飙完。。。

课程最后两周讲大偏差理论(私货),我没有接触过这方面内容,于是决定听一听。然而他先是罗列了大偏差的定义,然后立刻开始证明经验测度的sanov定理,为了证明这个定理又引出引理1234...我在下面只想苦笑,于是跑去图书馆借了本大偏差的书(作者Jean- Dominique Deuschel,Daniel W Stroock)念了三章,才勉强算是对大偏差理论有点了解。不得不说大偏差的很多结果是蛮漂亮的,最经典的大偏差大概是矩母函数存在时候的cramer定理,书中把cramer的理论推广到更一般的框架,要求波兰空间是某个局部凸Hausdorff拓扑向量空间里的凸集,并且拓扑是相容的,同时距离要满足一定的凸性条件,这时候只要测度指数胎紧,就成立与经典cramer定理完全一致的结果。如果我们取波兰空间为概率测度+levy- prohorov距离,局部凸tvs是全体有限符号测度用有界连续函数赋予弱拓扑,那我们就得到了sanov定理,它的速率函数是相对熵。另外一个关于Wiener测度的Schilder定理也可以归结到这个框架,它可以拿来证明布朗运动的Strassen重对数律,这玩意非常强,经典的Hartmann- wintner重对数律只是他的一个简单推论(当然如果是离散的随机游走,还要来一下Skorokhod嵌入)。总之看这本书比听杨老师讲课强一万倍...

作业质量奇差无比。大量很无聊的题目。具体说来,差不多一半以上的题目的解答都是下面两种之一:“容易验证命题对示性函数成立,进而对简单函数成立,由简单函数逼近得对非负可测函数成立......”“验证知xx是pi系,xx是lambda系,由单调类定理....”我为什么要浪费时间写这种东西?一整个学期?大家做题还是去做Durrett上题目吧,总体质量比较高。另外老师经常上课过程中即时布置作业,下课老师和助教都不会把作业发群里,导致我每周为了搞清楚“这周作业是什么”,都要去问好几个不同的人。

考试内容令人无语,拿到卷子,第一题证明某个积分趋于0,第二题是L1函数的黎曼勒贝格引理,第三题用富比尼定理证明俩等式。我还以为我走错教室进了实分析的考场。最后给分:本科生一分没调。优秀率不知多少,估计很惨。

总之这门课是全方位无死角的烂,我甚至找不到任何一个角度来夸赞它。我由衷地希望杨老师不要再教课了,以免影响到更多无辜的学生。

2023年更新:
为防止被某ss迫害 ,故放几个传送门:

据小道消息某ss被你院114个老师敲打514次了,只能说希望有所改观吧(至少别嗯测度论。。。


建议每次来上课抱着stein或者zmq睡大觉

或者在寝室自行抱着Durrett睡大觉

总之快逃!

在科第5年,第一次写评课社区,这课属实上到心态爆炸。。。

他上的东西不学吧,成绩还是得考的好看点;

他上的东西学吧,和高概的关系差十万八千里;

我一个过来水学分的,好歹让我看看概率的东西,感受一下概率的思想;

这全程测度论,然后突然开始条件期望?

严加安那本测度论的条件期望能看?你哪怕跳到Durrett的Ch4开始讲也好啊。。。

此外,上课讲错我能理解,但几乎每一次课都有错,每个定理都要想半天,涂涂改改,突然还自顾自地笑起来,这多少有点???笑?

虽然是不幸的打工人,但高概你就对着Durrett抄书我也勉强能接受啊,现在这上的叫啥呢?

总之,这学期的高概不论给分,体感巨差。之后杨的课是看都不可能看的了,希望下学期随机过程不是他上,在高概课清一色的高评分里,真是独树一帜。

删了重写,感觉之前写的过于高估这门课了。毫无意义的课程,你几乎没法在这门课看到任何本科概率论以外的概率,甚至看不到一个例子(一个都没有)。把概率论看做有限测度版本的测度论的观点搭配老师一言难尽的讲课,让这门课变成了一门与概率论无关同时也远够不上测度论的屑课。 考试更是突破了我的心里防线,考试内容要么是一句话证明,要么是与这门课毫无关系(一半的考试题和概率论一毛钱关系都没有),老师能做到让高等概率论的标准内容,他讲的内容和考试内容三者完全割裂,真的绝绝子。 如果他以后还会教这门课,一定不要选,因为这么课不仅不会加深你对概率论的理解,而且还会被他错误频出,逻辑古怪的讲课所迷惑,并被无聊的作业和逆天的考试折磨。