1.
Zhao Z, Deng Y, Zhang Y, et al. DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network.
BMC Med Inform Decis Mak.
2019;
19
(1):286–95. doi: 10.1186/s12911-019-1007-5.
[Zhao Z, Deng Y, Zhang Y, et al. DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network[J]. BMC Med Inform Decis Mak, 2019, 19(1): 286-95.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Byerly K, Vagner L, Grecu I, et al. Real-time big data processing and wearable Internet of medical things sensor devices for health monitoring.
Am J Med Res.
2019;
6
(2):67–73. doi: 10.22381/AJMR62201910.
[Byerly K, Vagner L, Grecu I, et al. Real-time big data processing and wearable Internet of medical things sensor devices for health monitoring[J].Am J Med Res, 2019, 6(2): 67-73.]
[
CrossRef
]
[
Google Scholar
]
3.
Li SC, Xu LD, Wang XH. Compressed sensing signal and data acquisition in wireless sensor networks and Internet of Things.
IEEE Trans Ind Inf.
2013;
9
(4):2177–86. doi: 10.1109/TII.2012.2189222.
[Li SC, Xu LD, Wang XH. Compressed sensing signal and data acquisition in wireless sensor networks and Internet of Things[J]. IEEE Trans Ind Inf, 2013, 9(4): 2177-86.]
[
CrossRef
]
[
Google Scholar
]
4.
Azimi I, Pahikkala T, Rahmani AM, et al. Missing data resilient decision-making for healthcare IoT through personalization: a case study on maternal health.
Futur Gener Comput Syst.
2019;
96
:297–308. doi: 10.1016/j.future.2019.02.015.
[Azimi I, Pahikkala T, Rahmani AM, et al. Missing data resilient decision-making for healthcare IoT through personalization: a case study on maternal health[J]. Futur Gener Comput Syst, 2019, 96: 297-308.]
[
CrossRef
]
[
Google Scholar
]
6.
Moffat A. Huffman coding.
ACM Computing Surveys.
2019;
52
(4):1–15.
[Moffat A. Huffman coding[J]. ACM Computing Surveys, 2019, 52 (4): 1-15.]
[
Google Scholar
]
7.
Marto HP, Barita SP, Iqbal PM, et al. Combination of cryptography algorithm knapsack and Run length enconding (RLE) compression in treatment of text file.
J Phys: Conf Ser.
2020;
1573
:12017–25. doi: 10.1088/1742-6596/1573/1/012017.
[Marto HP, Barita SP, Iqbal PM, et al. Combination of cryptography algorithm knapsack and Run length enconding (RLE) compression in treatment of text file[J]. J Phys: Conf Ser, 2020, 1573: 12017-25.]
[
CrossRef
]
[
Google Scholar
]
8.
Badshah G, Liew SC, Zain JM, et al. Watermark compression in medical image watermarking using lempel-ziv-welch (LZW) lossless compression technique.
J Digit Imaging.
2016;
29
(2):216–25. doi: 10.1007/s10278-015-9822-4.
[Badshah G, Liew SC, Zain JM, et al. Watermark compression in medical image watermarking using lempel-ziv-welch (LZW) lossless compression technique[J]. J Digit Imaging, 2016, 29(2): 216-25.]
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Maalej A, Ben-Romdhane M, Tlili M, et al. On the wavelet-based compressibility of continuous-time sampled ECG signal for e-health applications.
Measurement.
2020;
164
(21):108031–9.
[Maalej A, Ben-Romdhane M, Tlili M, et al. On the wavelet-based compressibility of continuous-time sampled ECG signal for e-health applications[J]. Measurement, 2020, 164(21): 108031-9.]
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
10.
Azar J, Makhoul A, Couturier R, et al. Robust IoT time series classification with data compression and deep learning.
Neurocomputing.
2020;
398
(16):222–34.
[Azar J, Makhoul A, Couturier R, et al. Robust IoT time series classification with data compression and deep learning[J]. Neurocomputing, 2020, 398(16): 222-34.]
[
Google Scholar
]
11.
Zhang H, Dong Z, Gao J, et al. Automatic screening method for atrial fibrillation based on lossy compression of the electrocardiogram signal.
Physiol Meas.
2020;
41
(7):075005–16. doi: 10.1088/1361-6579/ab979f.
[Zhang H, Dong Z, Gao J, et al. Automatic screening method for atrial fibrillation based on lossy compression of the electrocardiogram signal[J]. Physiol Meas, 2020, 41(7): 075005-16.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Aggarwal V, Gupta S, Patterh MS, et al. Analysis of compressed foetal phono-cardio-graphy (PCG) signals with discrete cosine transform and discrete wavelet transform.
IETE J Res.
2020;
108
:1–7.
[Aggarwal V, Gupta S, Patterh MS, et al. Analysis of compressed foetal phono-cardio-graphy (PCG) signals with discrete cosine transform and discrete wavelet transform[J]. IETE J Res, 2020, 108: 1-7.]
[
Google Scholar
]
13.
Chudáček V, Spilka J, Burša M, et al. Open access intrapartum CTG database.
BMC Pregnancy Childbirth.
2014;
14
(9):16–23.
[Chudáček V, Spilka J, Burša M, et al. Open access intrapartum CTG database[J]. BMC Pregnancy Childbirth, 2014, 14(9): 16-23.]
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
14.
Bsoul Raoof K. A simple noninvasive approach for fetal electrocardiogram extraction based on wavelet transform[C]//2015 International Conference on Advances in Biomedical Engineering (ICABME), 2015, Beirut, Lebanon. IEEE, 2015: 8-12.
15.
Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis.
Proc R Soc Lond A.
1998;
454
(1971):903–95. doi: 10.1098/rspa.1998.0193.
[Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc R Soc Lond A, 1998, 454 (1971): 903-95.]
[
CrossRef
]
[
Google Scholar
]
16.
周佳敏.基于EMD和小波时频分析的胎心率提取及系统设计方法[D].华南理工大学, 2018.
17.
Huang NE. New method for nonlinear and nonstationary time series analysis: empirical mode decomposition and Hilbert spectral analysis[C]//WaveletApplications Ⅶ. Orlando, FL. SPIE, 2000: 19-25.
18.
Yildirim O, Baloglu UB, Tan RS, et al. A new approach for arrhythmia classification using deep coded features and LSTM networks.
Comput Methods Programs Biomed.
2019;
176
:121–33. doi: 10.1016/j.cmpb.2019.05.004.
[Yildirim O, Baloglu UB, Tan RS, et al. A new approach for arrhythmia classification using deep coded features and LSTM networks[J]. Comput Methods Programs Biomed, 2019, 176: 121-33.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
Tang WS, Long GD, Liu L, et al. Rethinking 1D-CNN for time series classification: a stronger baseline[EB/OL]. <a href="https://arxiv.org/abs/2002.10061" target="_blank">https://arxiv.org/abs/2002.10061</a>
20.
Santurkar S, Tsipras D, Ilyas A, et al. How does batch normalization help optimization[EB/OL]. <a href="https://arxiv.org/abs/1805.11604" target="_blank">https://arxiv.org/abs/1805.11604</a>.
21.
El B'charri O, Latif R, Jenkal W, et al. The ECG signal compression using an efficient algorithm based on the DWT.
Ijacsa.
2016;
7
(3):181–7.
[El B'charri O, Latif R, Jenkal W, et al. The ECG signal compression using an efficient algorithm based on the DWT[J]. Ijacsa, 2016, 7 (3): 181-7.]
[
Google Scholar
]
22.
Han QL, Liu L, Zhao YD, et al. Ecological big data adaptive compression method combining 1D convolutional neural network and switching idea.
IEEEAccess.
2020;
8
(10):20270–8.
[Han QL, Liu L, Zhao YD, et al. Ecological big data adaptive compression method combining 1D convolutional neural network and switching idea[J]. IEEEAccess, 2020, 8(10): 20270-8.]
[
Google Scholar
]
23.
Chowdhury MR, Tripathi S, De S. Adaptive multivariate data compression in smart metering Internet of Things.
IEEE Trans Ind Inf.
2021;
17
(2):1287–97. doi: 10.1109/TII.2020.2981382.
[Chowdhury MR, Tripathi S, De S. Adaptive multivariate data compression in smart metering Internet of Things[J]. IEEE Trans Ind Inf, 2021, 17(2): 1287-97.]
[
CrossRef
]
[
Google Scholar
]
24.
Arican M, Polat K. A novel fetal ECG signal compression method: Variance and neighboring based data compression[C]//2018 26th Signal Processing and Communications Applications Conference (SIU), 2018. Izmir. IEEE, 2018: 1-4.
25.
Zhang ZL, Jung TP, Makeig S, et al. Compressed sensing for energyefficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning.
IEEE Trans Biomed Eng.
2013;
60
(2):300–9. doi: 10.1109/TBME.2012.2226175.
[Zhang ZL, Jung TP, Makeig S, et al. Compressed sensing for energyefficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning[J]. IEEE Trans Biomed Eng, 2013, 60(2): 300-9.]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Azar J, Makhoul A, Barhamgi M, et al. An energy efficient IoT data compression approach for edge machine learning.
Futur Gener Comput Syst.
2019;
96
:168–75. doi: 10.1016/j.future.2019.02.005.
[Azar J, Makhoul A, Barhamgi M, et al. An energy efficient IoT data compression approach for edge machine learning[J]. Futur Gener Comput Syst, 2019, 96: 168-75.]
[
CrossRef
]
[
Google Scholar
]