∫e^(-x^2)dx 是超越积分(不可积积分),它的原函数是非常规的可求其定积分:--------------------- 作者:SethChai 来源:CSDN 原文:https://blog.csdn.net/a493823882/article/details/81000079...
1. 凑一下 设∫−∞∞ e−x2 dx=I\int_{-\infty}^\infty\,e^{-x^2}\,dx = I∫−∞∞​e−x2dx=I,而且∫−∞∞ e−y2 dy=I\int_{-\infty}^\infty\,e^{-y^2}\,dy = I∫−∞∞​e−y2dy=I 那么 I2=∫−∞∞∫−∞∞ e−(x2+y2) dxdyI^2=\int_{-\infty}^\infty\int_{-\infty}^\infty\,e^{-{(x^2+y^2)}}\,dxdyI2=∫−∞∞​∫−∞∞​
I=∫−∞+∞e−x2dx=∫−∞+∞e−y2dy I=\int_{-\infty}^{+\infty}{e^{-x^2}dx}=\int_{-\infty}^{+\infty}{e^{-y^2}dy} I=∫−∞+∞​e−x2dx=∫−∞+∞​e−y2dy I2=∫−∞+∞e−x2dx⋅∫−∞+∞e−y2dy=∫−∞+∞dx∫−∞+∞e−x2⋅e−y2d
cosbx⋅e−x2cosbx \cdot e^{-x^2}cosbx⋅e−x2 在负无穷到正无穷的 积分 ∫−∞∞cosbx⋅e−x2dx  \int_{-\infty}^{\infty} cosbx \cdot e^{-x^2}dx\, ∫−∞∞​cosbx⋅e−x2dx 令 u = arcsin(x),dv = dx,则 du/dx = 1/√(1-x^2),v = x ∫arcsin(x) dx = xarcsin(x) - ∫x * (1/√(1-x^2)) dx 令 u = 1/√(1-x^2),dv = x dx,则 du/dx = x/[(1-x^2)^(3/2)],v = 1/2 * x^2 ∫arcsin(x) dx = xarcsin(x) - x√(1-x^2)/2 + ∫(1/√(1-x^2)) * x^2 dx 对最后一个 积分 再次使用分部 积分 法: 令 u = x,dv = (1/√(1-x^2)) dx,则 du/dx = 1,v = arcsin(x) ∫(1/√(1-x^2)) * x^2 dx = x * arcsin(x) - ∫arcsin(x) dx 将∫arcsin(x) dx代入上式: ∫(1/√(1-x^2)) * x^2 dx = x * arcsin(x) - x√(1-x^2)/2 - ∫xarcsin(x) dx 2∫arcsin(x) dx = x * arcsin(x) - x√(1-x^2)/2 + x * arcsin(x) - 2∫arcsin(x) dx 3∫arcsin(x) dx = x * arcsin(x) - x√(1-x^2)/2 最终结果为: ∫arcsin(x) dx = (2/3) * x * arcsin(x) + (1/3) * x√(1-x^2) + C,其中C为常数。